Geometry and Electronic Structure of Di-phenyl-amino Benzene Derivatives and Their Applications on OLED Devices

Document Type : Research Article


Faculty of Chemistry, University of Isfahan, Isfahan, I.R. IRAN


Recently, developments of the energetic sources attracted lots of attention since of its great importance. In this regard looking for the new generation of light sources is quite vital. OLED is one the best light sources which have great advantages, thus it has been a hot research topic now a day, especially to find the best material increasing its efficiency. Although the research topic is quite important, the required technology for is experimental study is significantly expensive. In this paper, we have presented a nice DFT-based theoretical method applicable for studying the efficacy of guest materials in OLED systems.


Main Subjects

[1] Kourkoulos D., Karakus C., Hertel D., Alle R., Schmeding S., Hummel J., Risch N., Holder E., Meerholz K., Photophysical Properties and OLED Performance of Light-Emitting Platinum(Ii) Complexes, Dalton Trans., 42(37): 13612-13621 (2013).
[2] Melzer C., Characterization of Organic Semiconductors and Optoelectronic Elements, Ph.D. Thesis, University of Groningen, The Netherlands. (2004).
[4] Koch W., Holthausen M.C., "A chemist's Guide to Density Functional Theory", John Wiley & Sons, Inc. (2015).
[6] Li S.H., Wu S.F., Wang Y.K., Liang J.J., Sun Q., Huang C.C., Wu J.C., Liao L.S., Fung M.K., Management of Excitons for Highly Efficient Organic Light-Emitting Diodes with Reduced Triplet Exciton Quenching: Synergistic Effects of Exciplex and Quantum Well Structure,  J. Mater. Chem. C., 6(2): 342-349 (2018).
[7] Jou J.H., Yu H.H., Tung F.C., Chiang C.H., He Z.K., Wei M.K., A Replacement for Incandescent Bulbs: High-Efficiency Blue-Hazard Free Organic Light-Emitting Diodes, J. Mater. Chem. C., 5(1): 176-182 (2017).
[9] Tang C.W., VanSlyke S.A., Organic Electroluminescent Diodes, Appl. Phys. Lett., 51(12): 913-915 (1987).
[10] Geffroy B., Le Roy P., Prat C., Organic Light‐Emitting Diode (OLED) Technology: Materials Devices And Display Technologies, Polym. Int., 55(6): 572-582 (2006).
[11] Jonaghani M.Z., Zali-Boeini H., Taheri R., Rudbari H.A., Askari B., Naphthothiazole-Based Highly Selective and Sensitive Fluorescent and Colorimetric Chemosensor for Detection of Pollutant Metal Ions, RSC Adv., 6(41): 34940-34945 (2016).
[13] Carter S.A., Angelopoulos M., Karg S., Brock P.J., Scott J.C., Polymeric Anodes for Improved Polymer Light-Emitting Diode Performance, Appl. Phys. Lett., 70(16): 2067-2069 (1997).
[14] Shi C., Sun N., Wu Z., Chen J., Ma D., High-Performance Hybrid Tandem White Organic Light-Emitting Diodes by Using a Novel Intermediate Connector, J. Mater. Chem. C., 6(4): 767-772 (2018).
[16] Wu J., Agrawal M., Becerril H.A., Bao Z., Liu Z., Chen Y., Peumans P., Mechanisms of Injection Enhancement in Organic Light-Emitting Diodes Through an Al/LiF Electrode, J. Appl. Phys., 89(1):  420-424 (2001).
[17] Jabbour G.E., Kippelen B., Armstrong N.R., Peyghambarian N., Aluminum Based Cathode Structure for Enhanced Electron Injection in Electroluminescent Organic Devices, Appl. Phys. Lett., 73(9): 1185-1187 (1998).
[18] Kulkarni A.P., Tonzola C.J., Babel A., Jenekhe S.A., Electron Transport Materials for Organic Light-Emitting Diodes, Chem. Mater., 16(23): 4556-4573 (2004).
[19] Karzazi Y., Organic Light-Emitting Diodes: Devices and Applications, J. Mater. Environ. Sci, 5(1): 1-12 (2014).
[20] Tang C.W., VanSlyke S.A., Organic Electroluminescent Diodes, Appl. Phys. Lett., 51(12):  913-915 (1987).
[21] Burroughes J.H., Bradley D.D., Brown A.R., Marks R.N., Mackay K., Friend R.H., Burns P.L., Holmes A.B., Light-Emitting Diodes Based on Conjugated Polymers, Nature, 347(6293): 539-541 (1990).
[22] Li X.N., Wu Z.J., Si Z.J., Zhang H.J., Zhou L., Liu X.J., Injection, Transport, Absorption and Phosphorescence Properties of a Series of Blue-Emitting Ir (III) Emitters in OLEDs: A DFT and Time-Dependent DFT Study, Inorg. Chem., 48(16): 7740-7749 (2009).
[23] Tavasli M., Moore T.N., Zheng Y., Bryce M.R., Fox M.A., Griffiths G.C., Jankus V., Al-Attar H.A., Monkman A.P., Colour Tuning From Green to Red by Substituent Effects in Phosphorescent Tris-Cyclometalated Iridium(iii) Complexes of Carbazole-Based Ligands: Synthetic, Photophysical, Computational and High-Efficiency OLED Studies, J. Mat. Chem., 22(13): 6419-6428 (2012).
[25] Adachi C., Kwong R.C., Djurovich P., Adamovich V., Baldo M.A., Thompson M.E., Forrest S.R., Endothermic Energy Transfer: a Mechanism for Generating Very Efficient High-Energy Phosphorescent Emission in Organic Materials, Appl. Phys. Lett., 79(13): 2082-2084 (2001).
[27] Dexter D.L., A Theory of Sensitized Luminescence in Solids, J. Chem. Phys., 21(5): 836-850 (1953).
[28] Burrows P.E., Gu G., Bulovic V., Shen Z., Forrest S.R., Thompson M.E., Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays, IEEE Trans. Electron Devices, 44(8): 1188-1203 (1997).
[30] Ahlrichs R., Bär M., Baron H., Bauernschmitt R., Böcker S., Ehrig M., Eichkorn K., Elliott S., Furche F., Haase F., TURBOMOLE V6. 2 2010, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007. TURBOMOLE GmbH, (2007).
[31] Ahlrichs R., Bär M., Häser M., Horn H., Kölmel C., Electronic Structure Calculations on Workstation Computers: the Program System Turbomole, Chem. Phys. Lett., 162(3): 165-169 (1989).
[33] Becke A.D., Becke’s Three Parameter Hybrid Method Using The LYP Correlation Functional, J. Chem. Phys, 98: 5648-5652 (1993).
[34] Brown H.C., Okamoto Y., Electrophilic Substituent Constants, J. Am. Chem. Soc., 80(18): 4979-4987 (1958).
[35] Hammett L.P., The Effect of Structure Upon The Reactions of Organic Compounds, Benzene Derivatives, J. Am. Chem. Soc., 59(1): 96-103. (1937).
[36] Adachi C., Nagai K., Tamoto N., Molecular Design of Hole Transport Materials for Obtaining High Durability in Organic Electroluminescent Diodes, Appl. Phys. Lett., 66(20): 2679-2681 (1995).