One-Step Synthesis of Novel Heterocycles of Dihydroquinolone-Coumarin in the Presence of ZnBr2 Catalyst

Document Type : Research Article


1 Department of Chemistry, Faculty of Science, University of Qom, Ghadir Blvd, Qom, I.R. IRAN

2 Institut für Chemie der Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, GERMANY


In view of the biological and pharmaceutical significance of coumarin and 3,4-dihydroquinolone structures, such as anticancer, anticoagulation of blood vessels and anti-HIV activities, and advantageous of synthesis of hybrid molecules by the combination of known pharmacophores for the development of a diverse range of novel pharmaceutical agents as potent drugs with many improved properties, in this article, various novel tetra- and pentacyclic heterocycles of 3,4-dihydroquinolones annulated tetrahydropyranocoumarin and α-pyrone were synthesized via domino Knoevenagel hetero Diels-Alder reaction of N-acrylated anthranilaldehyde with 4-hydroxy-coumarin and α-pyrone (4-hydroxy-6-methyl-2H-pyran-2-one) in the presence of 50 mol% ZnBr2 as a mild and low cost catalyst in refluxing acetic acid in one step. All products achieved with high yields with excellent regioselectivity and stereoselectivity.


Main Subjects

[2] Thornes R.D., O’Kennedy R., Thornes R.D., "Coumarins: Biology, Applications and Mode of Action", Jone Wiley and Sons, Inc., (1997).
[3] Shaabani A., Ghadari R., Rezayan A.H., Synthesis of Functionalized Coumarins, Iran. J. Chem. Chem. Eng. (IJCCE), 30(4): 19-22 (2011).
[4] Maeda M., "Laser Dyes: Properties of Organic Compounds for Dye Lasers", Academic Press (1982).
[5] Kotharkar S.A., Bahekar S.S., Shinde D.B., Chlorosulfonic Acid-Catalysed One-Pot Synthesis of Coumarin, Mendeleev Commun., 16: 241-242 (2006).
[7] Chaturvedula V.S.P., Schilling J.K., Kingston D.G.I., New Cytotoxic Coumarins and Prenylated Benzophenone Derivatives from the Bark of Ochrocarpos Punctatus from the Madagascar Rainforest, J. Nat. Prod. 65: 965-972 (2002).
[8] Flavin M.T., Rizzo J.D., Khilevich A., Kucherenko A., Sheinkman A.K., Vilaychack V., Lin L., Chen W., Greenwood E.M., Pengsuparp T., Pezzuto J.M., Synthesis, Chromatographic Resolution, and Anti-Human Immunodeficiency Virus Activity of (±)-Calanolide A and Its Enantiomers, J. Med. Chem., 39: 1303-1313 (1996). 
[9] Seitz W., Geneste H., Backfisch G., Delzer J., Graef C., Hornberger W., Kling A., Subkowski T., Zimmermann N., Design and Synthesis of Novel Potent and Selective Integrin α v β 3 Antagonists—Novel Synthetic Routes to Isoquinolinone, Benzoxazinone, and Quinazolinone Acetates, Bioorg. Med. Chem. Lett., 18: 527-531 (2008).
[11] Wang H., Sun B., Yang J., Wang J., Mao P., Yang L., Mai W., The synthesis of 3, 4-disubstituted Dihydroquinolin-2 (1H)-one under Metal-Free Conditions in Aqueous Solution, J. Chem. Res., 38: 542-545 (2014).
[13] Nishi T., Tabusa F., Tanaka T., Shimizu T., Kanbe T., Kimura Y., Nakagava K., Studies on 2-Oxoquinoline Derivatives as Blood Platelet Aggregation Inhibitors. II. 6-[3-(1-cyclohexyl- 5-tetrazolyl) propoxy]-1, 2-dihydro-2-oxoquinoline and Related Compounds, Chem. Pharm. Bull., 31: 1151-1157 (1983).
[14] Semba J., Watanabe A., Kito S., Toru M., Behavioural and Neurochemical Effects of OPC-14597, A Novel Antipsychotic Drug, on Dopaminergic Mechanisms in Rat Brain, Neuropharmacology, 34: 785-791 (1995).
[15] Joseph B., Darro F., Béhard A., Lesur B., Collignon F., Decaestecker C., Frydman A., Guillaumet G., Kiss R., 3-Aryl-2-Quinolone Derivatives: Synthesis and Characterization of in Vitro and in Vivo Antitumor Effects with Emphasis on a New Therapeutical Target Connected with Cell Migration, J. Med. Chem., 45: 2543-2555 (2002).
[17] Huang L.J., Hsieh M.C., Teng C.M., Lee K.H., Kuo S.C., Synthesis and antiplatelet activity of phenyl quinolones, Biorg. Med. Chem., 6: 1657-1662 (1998).
[18] Suzuki M., Ohuchi Y., Asanuma H., Kaneko T., Yokomori S., Ito C., Isobe Y., Muramatsu M., Synthesis and Evaluation of Novel 2-oxo-1, 2-dihydro-3-quinolinecarboxamide Derivatives as Serotonin 5-HT4 Receptor Agonists, Chem. Pharm. Bull., 48: 2003-2008 (2000).
[19] Li K., Foresee L.N., Tunge J.A., Trifluoroacetic Acid-Mediated Hydroarylation: Synthesis of Dihydrocoumarins and Dihydroquinolones, J. Org. Chem., 70: 2881-2883 (2005).
[20] Denmark S.E., Venkatraman S., On the Mechanism of the Skraup− Doebner− Von Miller Quinoline Synthesis, J. Org. Chem., 71: 1668-1676 (2006).
[21] Fujita K.I., Takahashi Y., Owaki M., Yamamoto K., Yamaguchi R., Synthesis of Five-, Six-, and Seven-Membered Ring Lactams by Cp* Rh Complex-Catalyzed Oxidative N-heterocyclization of Amino Alcohols, Org. lett., 6: 2785-2788 (2004).
[23] Akritopoulou-Zanze I., Whitehead A., Waters J.E., Henry R.F., Djuric S.W., Synthesis of Substituted 3, 4-dihydroquinolin-2 (1H)-one Derivatives by Sequential Ugi/acrylanilide [6π]-Photocyclizations, Tetrahedron Lett., 48: 3549-3552 (2007).
[24] Horn J., Li H.Y., Marsden S.P., Nelson A., Shearer R.J., Campbell A.J., House D., Weingarten G.G., Convergent Synthesis of Dihydroquinolones from o-aminoarylboronates, Tetrahedron, 65: 9002-9007 (2009).
[25] Mishra S., Singh P., Hybrid Molecules: The Privileged Scaffolds for Various Pharmaceuticals, Eur. J. Med. Chem., 124: 500-536 (2016).
[26] Sangani C.B., Makawana J.A., Zhang X., Teraiya S.B., Lin L., Zhu H.L., Design, Synthesis and Molecular Modeling of Pyrazole–Quinoline–Pyridine Hybrids as a New Class of Antimicrobial and Anticancer Agents, Eur. J. Med. Chem., 76: 549-557 (2014).
[27] Wang H.K., Bastow K.F., Cosentino L.M., Lee K.H., Antitumor Agents. 166. Synthesis and Biological Evaluation of 5, 6, 7, 8-substituted-2-phenylthiochromen-4-ones, J. Med. Chem., 39: 1975-1980 (1996).
[28] Ho T.L., Kung L.R., Chein R.J., Total Synthesis of (±)-2-Isocyanoallopupukeanane, J. Org. Chem., 65: 5774-5779 (2000).
[29] Amos D.T., Renslo A.R., Danheiser R.L., Intramolecular [4+ 2] Cycloadditions of Iminoacetonitriles: A New Class of Azadienophiles for Hetero Diels− Alder Reactions, J. Am. Chem. Soc., 125: 4970-4971 (2003).
[30] Tanaka N., Suzuki T., Hosoya Y., Nakada M., Synthetic Studies on (−)-FR182877: Construction of the ABCD Ring System via the Intramolecular Cycloadditions (2), Tetrahedron Lett., 48: 6488-6492 (2007).
[33] Snider B.B., Lu Q., Total Synthesis of (±)-leporin A, J. Org. Chem., 61: 2839-2844 (1996).
[34] Tietze L.F., Rackelmann N., Domino Reactions in the Synthesis of Heterocyclic Natural Products and Analogs, Pure Appl. Chem., 76: 1967-1983 (2004).
[36] Tietze L.F., Ott C., Gerke K., Buback M., The First Example of an Increase in the Enantioselectivity of a Chemical Reaction in the Presence of a Chiral Lewis Acid Under High Pressure, Angew. Chem. Int. Ed. Engl., 32: 1485-1486 (1993).
[37] Khoshkholgh M.J., Balalaie S., Gleiter R., Rominger F., Intramolecular Hetero-Diels–Alder Reaction of 1-oxa-1, 3-butadienes with Terminal Acetylenes in Aqueous Media Using CuI, Tetrahedron, 64: 10924-10929 (2008).
[39] Khoshkholgh M.J., Lotfi M., Balalaie S., Rominger F., Efficient Synthesis of Pyrano [2, 3-c] Coumarins Via Intramolecular Domino Knoevenagel Hetero-Diels–Alder Reactions, Tetrahedron, 65: 4228-4234 (2009).
[40] Moghaddam F.M., Kiamehr M., Khodabakhshi M.R., Mirjafary Z., Fathi S., Saeidian H., A New Domino Knoevenagel-hetero-Diels–Alder Reaction: An Efficient Catalyst-Free Synthesis of Novel Thiochromone-Annulated Thiopyranocoumarin Derivatives in Aqueous Medium, Tetrahedron, 66: 8615-8622 (2010).
[44] Ghandi M., Sheibani S., Sadeghzadeh M., Daha F.J., Kubicki M., Synthesis of Novel Tetra-and Pentacyclic Benzosultam Scaffolds Via Domino Knoevenagel hetero-Diels–Alder Reactions in Water, J. Iran. Chem. Soc., 10: 1057-1065 (2013).
[45] Kiamehr M., Alipour B., Mohammadkhani L., Jafari B., Langer P., ZnBr2 Catalyzed Domino Knoevenagel-hetero-Diels–Alder reaction: An Efficient Route to Polycyclic Thiopyranoindol Annulated [3, 4-c] quinolone derivatives, Tetrahedron, 73: 3040-3047 (2017).
[46] Apple I.A., Meth-Cohn O., 2-Aminobenzaldehydes from Quinolinium Salts and Alkaline Hydrogen Peroxide, Arkivoc, 6: 4-14 (2002).