Synthesis, Characterization and Theoretical Study of Coordination of a New Oxazolidine Ligand Toward Zinc with Evaluation of Biological Properties

Document Type : Research Article


Inorganic Chemistry Department, Faculty of Chemistry, Urmia University, Urmia, I.R. IRAN


In this work, a new oxazolidine-based ligand, 2-(2-(pyridin-2-yl)oxazolidin-3-yl)ethanol (AEPC), and its zinc complex, [Zn(AEPC)Br], were prepared and identified by elemental analysis, molar conductivity, FT-IR and 1H NMR spectroscopies. Based on the DFT calculations, in the structure of the complex, the zinc atom has coordination number four with tetrahedral geometry. Under ultrasonic irradiation and gelatin media, the nano complex of [Zn(AEPC)Br] is prepared. For evaluation of the biological properties of ligand and complex, Docking studies using the GOLD software on the ten human proteins were done and the results revealed that there are hydrogen bonds and short contact interactions between new compounds and studied macromolecules.


Main Subjects

[1] Dow R.L., Bechle B.M., Chou T.T., Clark D.A., Hulin B., Stevenson R.W., Benzyloxazolidine-2,4-Diones As Potent Hypoglycemic Agents, J. Med. Chem., 34: 1538-1544 (1991).
[2] Shapiro S.L., Rose I.M., Testa F.C., Roskin E., Freedman L., N-Substituted Oxazolidinediones. J. Am. Chem. Soc., 81: 6498-6504 (1959).
[3] Goncalves R.S., Kaiser C.R., Lourenco M.C., de Souza M.V., Wardell J.L., Wardell S.M.,
da Silva A.D., Synthesis and Antitubercular Activity of New Mefloquine-Oxazolidine Derivatives, Eur. J. Med. Chem., 45:  6095-100 (2010).
[4] Schnur R.C., Sarges R., Peterson M.J., Spiro Oxazolidinedione Aldose Reductase Inhibitors,
J. Med. Chem., 25:  1451-1454 (1982).
[5] Huggett M.J., Whittingham W.G., Buchanan K.I., De F.P.J., Bywaters L., Substituted Oxazolidinediones and Their Use as Fungicides, (1997), Google Patents.
[6] Bodor N., Sloan K.B., Soft Drugs V: Thiazolidine-type Derivatives of Progesterone and Testosterone, J. Pharm. Sci., 71:  514-520 (1982).
[7] Johansen M., Bundgaard H., Prodrugs as Drug Delivery Systems XXV: Hydrolysis of Oxazolidines-A Potential New Prodrug Type, J. Pharm. Sci., 72:  1294-1298 (1983).
[8] Testa B., Mayer J.-M., Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry and Enzymology, Wiley-VHCA: Zurich. p. 710-714 (2003).
[9] Bruijnincx P.C.A., Sadler P.J., New Trends for Metal Complexes with Anticancer Activity, Curr. Opin. Chem. Biol., 12: 197-206 (2008).
[10] Hanif M., Henke H., Meier S.M., Martic S., Labib M., Kandioller W., Jakupec M.A., Arion V.B., Kraatz H.-B., Keppler B.K., Hartinger C.G., Is the Reactivity of M(II)−Arene Complexes of 3-Hydroxy-2(1H)-pyridones to Biomolecules the Anticancer Activity Determining Parameter?, Inorg. Chem., 4: 7953-7963 (2010).
[11] Selwood T., Jaffe E.K., Dynamic Dissociating Homo-Oligomers and the Control of Protein Function, Arch. Biochem. Biophys., 519:  131-143 (2012).
[12] Sadava D.E., Hillis D.M., Heller H.C., Life: The Science of Biology. (2011): W. H. Freeman.
[13] Takaesu G., Kishida S., Hiyama A., Yamaguchi K., Shibuya H., Irie K., Ninomiya-Tsuji J., Matsumoto K., TAB2, a Novel Adaptor Protein, Mediates Activation of TAK1 MAPKKK by Linking TAK1 to TRAF6 in the IL-1 Signal Transduction Pathway, Mol. Cell, 5: 649-658 (2000).
[14] Dobson C.M., The Structural Basis of Protein Folding and Its Links with Human Disease, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356: 133-145 (2001).
[16] Jones G., Willett P., Glen R.C., Leach A.R., Taylor R., Development and Validation of a Genetic Algorithm for Flexible Docking, Journal of Molecular Biology, 267:  727-748 (1997).
[17] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J., Brothers E.N., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, 2009, Gaussian, Inc.: Wallingford, CT, USA.
[19] Allen F.H., The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising, Acta Crystallogr., B58:  380-388 (2002).
[21] Cardile S.A., Jennings M.C., Jones N.D., Pyridinyloxazolidines: Versatile Scaffolds for Chiral Catalyst Construction, Dalton Trans., 4672-4678 (2006).
[22] Mukherjee A., Dhar S., Nethaji M., Chakravarty A.R., Ternary iron(ii) Complex with an Emissive Imidazopyridine Arm from Schiff Base Cyclizations and its Oxidative DNA Cleavage Activity, Dalton Trans., 349-353 (2005).
[23] Roy M., Patra A.K., Mukherjee A., Nethaji M., Chakravarty A.R., Ternary Iron(II) Complexes of Phenanthroline Bases Showing DNA Binding and Cleavage Activity, Indian J. Chem., 46A:  227-237 (2007).
[24] Hakimi M., Mardani Z., Moeini K., Minoura M., Raissi H., Synthesis, Characterization and Crystal Structure of a Binuclear Cadmium Iodide Complex with a Multi-N-donor Oxazolidine Ligand, Z. Naturforsch, 66b: 1122 (2011).
[25] Fu H.-Y., Dou J.-M., Li D.-C., Wang D.-Q., {2-(2-Pyridyl)-5-[(2-pyridylmethylidene) aminomethyl]-1,3-oxazoline-[kappa]4N}bis(thiocyanato-[kappa]N)nickel(II), Acta Crystallogr., E63:  m1793-m1795 (2007).
[27] Strong E.T.J., Cardile S.A., Brazeau A.L., Jennings M.C., McDonald R., Jones N.D., Chiral, Hemilabile Palladium(II) Complexes of Tridentate Oxazolidines, Including C2-Symmetric “Pincers”. Inorg. Chem., 47: 10575-10586 (2008).
[28] Canabarro C.M., Ceolin J., Siqueira J.D., Iglesias B.A., Manzoni de Oliveira G., Back D.F., Campos P.T., Evaluation of the Antioxidant Activity of Copper(II) Complexes Containing Tris-(hydroxymethyl)aminomethane (TRIS) Units, Z. Anorg. Allg. Chem., 642: 1192-1197 (2016).