Comparison of Improvement Efficiency of Alumina and Zeolite Using Piperazine Solution for Carbon Dioxide Adsorption

Document Type : Research Article

Authors

1 Faculty of Chemical Engineering, Kermanshah University of Technology, Kermanshah, I.R. IRAN

2 Faculty of Chemical Engineering, Oil and Gas, Iran University of Science and Technology, Tehran, I.R. IRAN

Abstract

In this research, zeolite and active alumina adsorbents were modified to increase the absorption of carbon dioxide using piperazine solution. The effect of different operating conditions including temperature, pressure, amount of adsorbent, particle size, and concentration of piperazine solution on the adsorption process were investigated. The results of the adsorption experiments showed that, with increasing pressure and decreasing temperature, the adsorption rate increased, and the highest amount of carbon dioxide absorption was at 25 ° C, 8 bar, 1 g of adsorbent, 200 micron particles, and 2% concentration weight is piperazine. Absorption capacity for active alumina increased from 166.516 to 222 mg/g, absorbent for zeolite 13X from 194.844 to 244.084 mg/g. In general, the modified 13X zeolite adsorbent has a higher absorbance compared to modified activated alumina, but it also increases the level of absorption of active alumina. Thus, according to the results of this study, modified adsorbents with piperazine have a good effect on carbon dioxide absorption. At high temperatures, it also increases the absorption rate of the absorbent material.

Keywords

Main Subjects


[2] Fashi F., Ghaemi A., Moradi P., Piperazine-Modified Activated Alumina as a Novel Promising Candidate for CO2 Capture: Experimental and Modeling, Greenhouse Gases: Science and Technology, online published, 21 November (2018).
[3] Naeem S., Ghaemi A., Shahhosseini S., Experimental Investigation of CO2 Capture Using Sodium Hydroxide Particles in a Fluidized Bed, Korean Journal of Chemical Engineering, 33: 1278-1285 (2016).
[4] Pashaei H., Ghaemi A., Nasiri M., Heydarifard M., Experimental Investigation of the Effect of Nano Heavy Metal Oxide Particles in Piperazine Solution on CO2 Absorption Using Stirrer Bubble Column, Energy & Fuels, 32 (2): 2037–2052 (2018).
[5] Naeem S., Shahhosseini Sh., Ghaemi A., Simulation of CO2 Capture Using Sodium Hydroxide Solid Sorbent in a Fluidized Bed Reactor by a Multi-Layer Perceptron Neural Network, Journal of Natural Gas Science and Engineering, 31: 305-312 (2016).
[6] Pashaei H., Ghaemi A., Nasiri M., Experimental Investigation of CO2 Removal Using Piperazine Solution in a Stirrer Bubble Column, International Journal of Greenhouse Gas Control, 63: 226-240 (2017).
[8] مرضیه مهدی زاده، احد قائمی، مدل‌سازی و شبیه‌سازی ستون بسترثابت جذب واکنش‌دار کربن‌دی‌اکسید توسط پلی‌اسپارتامید، نشریه شیمی و مهندسی شیمی ایران، (4)38 : صفحه 189 تا 198 (1398).
[9] Zhang G., Zhao P., Hao L., Xu Y., Amine-Modified SBA-15 (P): A Promising Adsorbent for CO2 Capture, Journal of CO2 Utilization, 24: 22-33 (2018).
[10] Tan Y.L., Islam M.A., Asif M., Hameed B.H., Adsorption of Carbon Dioxide by Sodium Hydroxide-Modified Granular Coconut Shell Activated Carbon in a Fixed Bed. Energy, 77: 926-931 (2014).
[11] Minju N., Abhilash P., Balagopal N. Nair A.,  Amine Impregnated Porous Silica Gel Sorbents Synthesized From Water–Glass Precursors for CO2 Capturing, Chemical Engineering Journal, 269: 335-342 (2015).
[12] Lara Y., Romeo L.M., Amine-impregnated Alumina Solid Sorbents for CO2 Capture. Lessons learned. Energy Procedia, 114: 2372-2379 (2017).
[13] Auta M., Hameed B., Adsorption of Carbon Dioxide by Diethanolamine Activated Alumina Beads in a Fixed Bed, Chemical Engineering Journal, 253: 350-355 (2014).
[14] Bansiwal, A., Kumar, V., Pillewan, P., Labhsetwar, N., Biniwale, R., & Rayalu, S., Functionalised Adsorbents for Carbon dioxide Capture, in Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate., 231-245 (2014).
[17] Franchi, R.S. P.J. Harlick, and A. Sayari, Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2, Industrial & Engineering Chemistry Research, 44(21):  8007-8013 (2005).
[18] Yue, M. B., Sun, L. B., Cao, Y., Wang, Y., Wang, Z. J., & Zhu, J. H., Efficient CO2 Capturer Derived from As-Synthesized MCM‐41 Modified with Amine. Chemistry-A European Journal, 14(11): 3442-3451 (2008).
[19] Jadhav, P. D., Chatti, R. V., Biniwale, R. B., Labhsetwar, N. K., Devotta, S., & Rayalu, S. S., Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption At Different Temperatures, Energy & Fuels, 21(6): 3555-3559 (2007).
[20] Son W.J., Choi J.S., Ahn W.S., Adsorptive Removal of Carbon Dioxide Using Polyethyleneimine-Loaded Mesoporous Silica Materials, Microporous and Mesoporous Materials, 113(1): 31-40 (2008).
[21] Drage, T. C., Arenillas, A., Smith, K. M., & Snape, C. E., Thermal Stability of PolyethylenimineBased Carbon Dioxide Adsorbents and Its Influence on Selection Of Regeneration Strategies, Microporous and Mesoporous Materials, 116(1): 504-512 (2008).
[22] Gerente C., Lee V.K.C., Cloirec P.L., McKay G., Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption—Mechanisms and Models Review, Critical Reviews in Environmental Science and Technology, 37(1): 41-127 (2007).
[23] Gray M.L., Champagne K.J., Fauth D., Baltrus J.P., Pennline H., Performance of Immobilized Tertiary Amine Solid Sorbents for the Capture of Carbon Dioxide. International Journal of Greenhouse Gas Control, 2(1):  3-8 (2008).
[24] Ma X.X., Wang Song C., “Molecular Basket” Sorbents for Separation of CO2 and H2S From Various Gas Streams, Journal of the American Chemical Society, 131(16): 5777-5783 (2009).
[25] Fisher J.C., Tanthana J.,. Chuang S.S, Oxide‐Supported Tetraethylenepentamine for CO2 Capture. Environmental Progress & Sustainable Energy, 28(4): 589-598 (2009).
[26] Su F., Lu C., Kuo S.C., Zeng W., Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites, Energy & Fuels, 24(2): 1441-1448 (2010).
[27] Sema T., Naami A., Idem R., Tontiwachwuthikul P., Correlations For Equilibrium Solubility of Carbon Dioxide in Aqueous 4-(Diethylamino)-2-Butanol Solutions, Industrial & Engineering Chemistry Research, 50(24): 14008-14015 (2011)
[28] Abkhiz V., Heydari I., Comparison of Amine Solutions Performance for Gas Sweetening, Asia‐Pacific Journal of Chemical Engineering,. 9(5): 656-662 (2014).
[29] Mondal M.K., Balsora H.K., Varshney P., Progress and Trends in CO2 Capture/Separation Technologies: A Review. Energy, 46(1): 431-441 (2012).
[30] Huttenhuis P.J.G., Mohan A., Van Loo S., Versteeg G.F., Absorption of Carbonyl Sulphide in Aqueous Piperazine, in: "Institution of Chemical Engineers Symposium Series".. Institution of Chemical Engineers; (2006 ).
[31] Saeidi M., Ghaemi A., Tahvildari K., Derakhshi P., Exploiting Response Surface Methodology (RSM) as a Novel Approach for the Optimization of Carbon Dioxide Adsorption by Dry Sodium Hydroxide, Journal of the Chinese Chemical Society5(12): 1465-1475 (2018).