Removal of Direct Blue 71 Dye from Aqueous Media in a Photocatalytic Fixed Bed Reactor, Containing LECA Granols Coated by TiO2-Ce Nanoparticles

Document Type : Research Article

Authors

Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, I.R. IRAN

Abstract

The separation of nanocatalysts from the liquid phase often limits their use in industrial-scale processes due to their small size. To solve this problem, nanocatalyst is often embedded on the substrates. In this study, at the first stage, cerium doped TiO2 nanoparticles were prepared by the sol-gel method. Then, LECA granules are used as a support phase for immobilizing nanoparticles. Nanoparticles are characterized by Fourier-transform InfraRed (FT-IR) spectroscopy, X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM), and nitrogen adsorption-desorption isotherms (BET). The FE-SEM studies showed a uniform coating of TiO2-Ce nanoparticles on the surface of LECA granules. A catalytic bed was constructed with a regular arrangement of the LECA granules and immersed in a photoreactor with the cyclic flow. The degradation of direct blue 71 (DB71) was investigated in the fixed bed photoreactor. The results showed that the fixed bed configuration (5.3gr) could remove about 96% of the dye (DB71, 20ppm) during 1h irradiation under a UV light source. Furthermore, the ability of coated LECA granules in the degradation of dye was studied in the floating condition under sunlight. The results showed that with daily irradiation for 4 h, the catalyst can remove 94% of the color over three days.

Keywords

Main Subjects


[1] Mills A., Le Hunte S., An Overview of Semiconductor Photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 108(1): 1-35 (1997).
[2] Khaki M.R.D., Shafeeyan M.S., Raman A.A.A., Daud W.M.A.W., Application of Doped Photocatalysts for Organic Pollutant Degradation-A Review, Journal of Environmental Management, 198: 78-94 (2017).
[3] Xu Y.H., Chen H.R., Zeng Z.X., Lei B., Investigation on Mechanism of Photocatalytic Activity Enhancement of Nanometer Cerium-Doped Titania, Applied Surface Science, 252(24): 8565-8570 (2006).
[4] Wang C., Ao Y., Wang P., Hou J., Qian J., Zhang S., Preparation, Characterization, Photocatalytic Properties of Titania Hollow Sphere Doped with CeriumJournal of Hazardous Materials, 178(1-3): 517-521 (2010).
[5] Touati A., Hammedi T., Najjar W., Ksibi Z., Sayadi S., Photocatalytic Degradation of Textile Wastewater in Presence of Hydrogen Peroxide: Effect of Cerium Doping Titania, Journal of Industrial and Engineering Chemistry, 35: 36-44 (2016).
[6] Reli M., Ambrožová N., Šihor M., Novel Cerium Doped Titania Catalysts for Photocatalytic Decomposition of Ammonia, Applied Catalysis B: Environmental, 178: 108-116 (2015).
[7] Saien J., Asgari M., Soleymani A.R., Taghavinia N., Photocatalytic Decomposition of Direct Red 16 And Kinetics Analysis in a Conic Body Packed Bed Reactor with Nanostructure Titania Coated Raschig RingsChemical Engineering Journal, 151(1-3): 295-301 (2009).
[8] Kobayakawa K., Sato C., Sato Y., Fujishima A., Continuous-Flow Photoreactor Packed with Titanium Dioxide Immobilized on Large Silica Gel Beads to Decompose Oxalic Acid in Excess Water, Journal of Photochemistry and Photobiology A: Chemistry118(1): 65-69 (1998).
[9] Puma G.L., Bono A., Krishnaiah D., Collin J.G., Preparation of Titanium Dioxide Photocatalyst Loaded onto Activated Carbon Support Using Chemical Vapor Deposition: A Review Paper, Journal of Hazardous Materials, 157(2-3): 209-219 (2008).
[10] Vohra M.S., Tanaka K., Photocatalytic Degradation of Aqueous Pollutants Using Silica-Modified TiO2, Water Research, 37(16): 3992-3996 (2003).
[11] Shang J., Li W., Zhu Y., Structure and Photocatalytic Characteristics of TiO2 Film Photocatalyst Coated on Stainless Steel Webnet, Journal of Molecular Catalysis A: Chemical, 202(1): 187-195 (2003).
[12] Ao C.H., Lee S.C., Jimmy C.Y., Photocatalyst TiO2 Supported on Glass Fiber for Indoor Air Purification: Effect of NO on the Photodegradation of CO and NO2, Journal of Photochemistry and Photobiology A: Chemistry, 156(1): 171-177 (2003).
[13] Fabiyi M.E., Skelton R.L., Photocatalytic Mineralisation of Methylene Blue Using Buoyant TiO2-Coated Polystyrene Beads, Journal of Photochemistry and Photobiology A: Chemistry, 132(1-2): 121-128 (2000).
[14] Długosz M., Waś J., Szczubiałka K., Nowakowska M., TiO2-Coated EP as a Floating Photocatalyst for Water Purification, Journal of Materials Chemistry A, 2(19): 6931-6938 (2014).
[15] Chen H., Lee S.W., Kim T.H., Hur B.Y., Photocatalytic Decomposition of Benzene with Plasma Sprayed TiO2-Based Coatings on Foamed Aluminum, Journal of the European Ceramic Society, 26(12): 2231-2239 (2006).
[16] Behnajady M.A., Modirshahla N., Daneshvar N., Rabbani M., Photocatalytic Degradation of an Azo Dye in a Tubular Continuous-Flow Photoreactor with Immobilized TiO2 on Glass Plates, Chemical Engineering Journal, 127(1-3): 167-176 (2007).
[17] Azzaz A.A., Assadi A.A., Jellali S., Bouzaza A., Wolbert D., Rtimi S., Bousselmi L., Discoloration of Simulated Textile Effluent in Continuous Photoreactor Using Immobilized Titanium Dioxide: Effect of Zinc and Sodium ChlorideJournal of Photochemistry and Photobiology A: Chemistry, 358: 111-120 (2018).
[18] Singh A., Verma A., Bansal P., Aggarwal K., Kaur T., Toor A.P., Sangal V.K., Catalyst-Coated Cement Beads for the Degradation and Mineralization of Fungicide Carbendazim Using Laboratory and Pilot-Scale Reactor: Catalyst Stability Analysis, Environmental Technology, 39(4): 424-432 (2018).
[19] Sepehr M.N., Kazemian H., Ghahramani E., Amrane A., Sivasankar V., Zarrabi M., Defluoridation of Water via Light Weight Expanded Clay Aggregate (LECA): Adsorbent Characterization, Competing Ions, Chemical Regeneration, Equilibrium and Kinetic Modeling, Journal of the Taiwan Institute of Chemical Engineers, 45(4): 1821-1834 (2014).
[20] Długosz M., Żmudzki P., Kwiecień A., Szczubiałka K., Krzek J., Nowakowska M., Photocatalytic Degradation of Sulfamethoxazole in Aqueous Solution Using a Floating TiO2-Expanded Perlite PhotocatalystJournal of Hazardous Materials, 298: 146-153 (2015).
[21] Murgolo S., Petronella F., Ciannarella R., Comparelli R., Agostiano A., Curri M.L., Mascolo G., UV and Solar-Based Photocatalytic Degradation of Organic Pollutants by Nano-Sized TiO2 Grown on Carbon Nanotubes, Catalysis Today, 240: 114-124 (2015).
[22] Hosseini S.N., Borghei S.M., Vossoughi M., Taghavinia N., Immobilization of TiO2 on Perlite Granules for Photocatalytic Degradation of PhenolApplied Catalysis B: Environmental, 74(1-2): 53-62 (2007).
[23] Faramarzpour M., Vossoughi M., Borghei M., Photocatalytic Degradation of Furfural by Titania Nanoparticles in a Floating-Bed PhotoreactorChemical Engineering Journal, 146(1): 79-85 (2009).
[24] Shavisi Y., Sharifnia S., Zendehzaban M., Application of Solar Light for Degradation of Ammonia in Petrochemical Wastewater by a Floating TiO2/LECA Photocatalyst, Journal of Industrial and Engineering Chemistry, 20(5): 2806-2813 (2014).
]25[ زمان خان، حسام؛ آیتی، بیتا؛ گنجی دوست، حسین؛ تجزیه فتوکاتالیستی فنل به وسیله نانوذرات روی اکسید تثبیت شده بر بستر بتنی، نشریه شیمی و مهندسی شیمی ایران، (3و4)31: 9 تا 19(1391).
[26] Soleymani A.R., Chahardoli R., Kaykhaii M., Development of UV/H2O2/TiO2–LECA Hybrid Process Based on Operating Cost: Application of an Effective Fixed Bed Photo-Catalytic Recycled Reactor, Journal of Industrial and Engineering Chemistry44: 90-98 (2016).
[27] Chung K.T., Azo Dyes and Human Health: A Review, Journal of Environmental Science and Health, Part C, 34(4): 233-261 (2016).
[28] Turkten N., Cinar Z., Photocatalytic Decolorization of Azo Dyes on TiO2: Prediction of Mechanism Via Conceptual DFT, Catalysis Today, 287: 169-175 (2017).
[29] Yu T., Tan X., Zhao L., Yin Y., Chen P., Wei J., Characterization, Activity and Kinetics of a Visible Light-Driven Photocatalyst: Cerium And Nitrogen Co-Doped TiO2 Nanoparticles, Chemical Engineering Journal, 157(1): 86-92 (2010).
[30] Yang H., Zhang K., Shi R., Tang A., Sol-Gel Synthesis and Photocatalytic Activity of CeO2/TiO2 Nanocomposites, Journal of the American Ceramic Society, 90(5): 1370-1374 (2007).
[31] Ertugay N., Acar F.N., Decolorization of Direct Blue 71 Using UV Irradiation and Ultrasound in the Presence of TiO2 Catalyst, Desalination and Water Treatment, 57(20): 9318-9324 (2016).
[32] Praveen P., Viruthagiri G., Structural, Optical and Morphological Analyses of Pristine Titanium di-oxide Nanoparticles–Synthesized via Sol-Gel Route, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117: 622-629 (2014).
[34] Thangavelu K., Annamalai R., Arulnandhi D., Preparation and Characterization of Nanosized TiO2 Powder by Sol-Gel Precipitation Route, International Journal of Emerging Technology and Advanced Engineering, 3(1): 636 (2013).
[35] You Y.F., Xu C.H., Xu S.S., Structural Characterization and Optical Property of TiO2 Powders Prepared by the Sol–Gel Method, Ceramics International, 40(6): 8659-8666 (2014).
[38] Scherrer P., Bestimmung Der Inneren Struktur und der Größe von Kolloidteilchen Mittels Röntgenstrahlen, In: "Kolloidchemie Ein Lehrbuch", Springer, Berlin, Heidelberg: 387-409 (1912).
[39] Yan N., Zhu Z., Zhang J., Zhao Z., Liu Q., Preparation and Properties of Ce-Doped TiO2 Photocatalyst, Materials Research Bulletin, 47(8): 1869-1873 (2012).
[40] Fan C., Xue P., Sun Y., Preparation of Nano-TiO2 Doped with Cerium and its Photocatalytic Activity, Journal of Rare Earths, 24(3): 309-313 (2006).
[42] Galindo F., Gómez R., Aguilar M., Photodegradation of the Herbicide 2, 4-dichlorophenoxyacetic Acid on Nanocrystalline TiO2–CeO2 Sol-Gel Catalysts, Journal of Molecular Catalysis A: Chemical, 281(1): 119-125 (2008).
[44] Nouri Sepehr M., Kazemian H., Ghahramani E., Amrane A., Sivasankar V., Zarrabi M., Defluoridation of Water via Light Weight Expanded Clay Aggregate (LECA): Adsorbent Characterization, Competing Ions, Chemical Regeneration, Equilibrium and Kinetic Modeling, Journal of the Taiwan Institute of Chemical Engineers, 45(4): 1821-1834 (2014).
[45] Zendehzaban M., Sharifnia S., Hosseini S.N., Photocatalytic Degradation of Ammonia by Light Expanded Clay Aggregate (LECA)-Coating of TiO2 Nanoparticles, Korean Journal of Chemical Engineering, 30(3): 574-579 (2013).