An Amperometric Sensor Based on Bimetallic Pt- Pd Nanoparticles Supported on Graphene Nanosheets

Document Type : Research Article

Authors

Faculty of Chemistry, University of Mazandaran, Babolsar, I.R. IRAN

Abstract

In this research work, at first, bimetallic Pt-Pd particles/ ERGO nanohybrid was prepared on glassy carbon electrode (GCE) and then was used to determine bisphenol A (BPA). The morphology of modified electrode was studied by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and energy dispersive spectroscopy (EDS). Cyclic voltammetry (CV) of modified electrode in the presence of BPA in phosphate buffer indicated an oxidation peak at 0.44 V which means the irreversible oxidation process of this compound. In addition, electrochemical impedance spectroscopy results showed that charge transfer of Pt-Pd/ERGO/GCE is lower than GCE and ERGO/GCE. Amperometric method was applied as a sensitive analytical method for the determination of BPA. A linear relationship between the oxidation peak current and BPA concentration was obtained in the range from 5 to 201.5 µM with a detection limit of 0.75 µM and sensitivity of 0.13 µA µM-1. Moreover, the proposed electrode exhibits good selectivity for electrooxidation of BPA.

Keywords

Main Subjects


[1] Zhang Y., Wang L., Lu D., Shi X., Wang C., Duan X., Sensitive Determination of Bisphenol a Base on Arginine Functionalized Nanocomposite Graphene Film, Electrochim. Acta, 80: 77-83 (2012).
[2] Seachrist D.D., Bonk K.W., Ho S., Prince G.S., Soto A.M., Keri R.A., A Review of the Carcinogenic Potential of Bisphenol A, Reproductive Toxicol., 59: 167-182 (2016).
[4] Patrolecco L., Ademollo N., Grenni P., Tolomei A., Caracciolo A. B, Capri S.,  Simultaneous Determination of Human Pharmaceuticals in Water Samples by Solid Phase Extraction and HPLC with UV-Fluorescence Detection, Microchem. J., 107: 165-171 (2015).
[6] Fernandez M.A.M., André L.C., Cardeal Z. de Lourdes, Hollow Fiber Liquid-Phase Microextraction-Gas Chromatography-Mass Spectrometry Method to Analyze Bisphenol a, and Other Plasticizer Metabolites, J. Chromatogr. A, 1481: 10-18 (2017).
[3] قلیزاده اعظم ، شاهرخیان سعید ، ایرجی زاد اعظم ، مهاجرزاده شمس الدین ، وثوقی منوچهر ، اندازه‌گیری گلوتامات با استفاده از حسگر زیستی بر پایه نانولوله‌های کربنی عمودی، نشریه شیمی و مهندسی شیمی ایران،32 (4) :36-33 (1392).
[2] Abnous K., Danesh N. M., Ramezani M., Alibolandi M., Taghdisi S. M., A Novel Electrochemical Sensor for Bisphenol a Detection Based on Nontarget-Induced Extension of Aptamer Length and Formation of a Physical Barrier, Biosens. Bioelectron., 119: 204-208 (2018).
[10] Zheng W., Xiong Z., Li H., Yu S., Li G., Niu L., Liu W., Electrodeposited Pt@Molecularly Imprinted Polymer Core-Shell Nanostructure: Enhanced Sensing Platform for Sensitive and Selective Detection of Bisphenol A, Sens. Actuat. B: Chem., 272: 655-661 (2018).
[11] Deiminiat B., Rounaghi G. H., Arbab-Zavar M. H., Razavipanah I., A Novel Electrochemical Aptasensor Based on F-Mwcnts/Aunps Nanocomposite For Label-Free Detection of Bisphenol A, Sens. Actuat B: Chem.242: 158-166 (2017).
[12] Messaoud N. B., Ghica M. E., Dridi C., Ali M. B., Brett C.M. A., Electrochemical Sensor Based On Multiwalled Carbon Nanotube and Gold Nanoparticle Modified Electrode for the Sensitive Detection of Bisphenol A, Sens. Actuat B: Chem.253: 513-522 (2017).
[13] Xin X., Sun S., Li H., Wang M., Jia R., Electrochemical Bisphenol A Sensor Based on Core–Shell Multiwalled Carbon Nanotubes/Graphene Oxide Nanoribbons, Sensors and Actuators B: Chemical, 209: 275-280 (2015).
[16] Duan Y., Li S., Qiao J., Zuo L., Ye B., Highly Sensitive Determination of Bisphenol a Based on Mocuse Nanoparticles Decorated Reduced Graphene Oxide Modified Electrode, J. Electroanal. Chem., 827: 137-144 (2017).
[17] Zou J., Zhao G., Teng J., Liu Q., Jiang X., Jiao F., Yu J., Highly Sensitive Detection of Bisphenol a in Real Water Samples Based on In-Situ Assembled Graphene Nanoplatelets and Gold Nanoparticles Composite, Microchem. J., 145: 693-702 (2019).
[18  ] Xu X., Zheng Q., Bai G., Song L., Yao Y., Cao X., Liu S., Yao C., Polydopamine Induced in-Situ Growth of Au Nanoparticles on Reduced Graph Ene Oxide as an Efficient Biosensing Platform for Ultrasensitive Detection of Bisphenol A, Electrochim. Acta, 242: 56-65 (2017).
[19] Mahmoudi E., Hajian A., Rezaei M., Afkhami A., Amine A., Bagheri H., A Novel Platform Based on Graphene Nanoribbons/Protein Capped Au-Cu Bimetallic Nanoclusters: Application to the Sensitive Electrochemical Determination of Bisphenol A, Microchem. J., 145: 242-251 (2019).
[20] Tian C., Chen D., Lu N., Li Y., Cui R., Han Z., Zhang G., Electrochemical Bisphenol A Sensor Based on Nanoporous Ptfe Alloy and Graphene Modified Glassy Carbon ElectrodeJ. Electroanal. Chem., 830–831:27-33 (2018).
[21] Su B., Shao H., Li N., Chen X., Cai Z., Chen X.,  A Sensitive Bisphenol A Voltammetric Sensor Relying on Aupd Nanoparticles/Graphene Composites Modified Glassy Carbon Electrode, Talanta 176:126-132 (2017).
[22] Hummers Jr, W. S., & Offeman, R. E. Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80(6): 1339-1339 (1958).
[23] Yin, H. S., Zhou, Y. L., Ai, S. Y., Preparation and Characteristic of Cobalt Phthalocyanine Modified Carbon Paste Electrode for Bisphenol A Detection, J. Electroanal. Chem.626(1-2): 80-88 (2009).
[24] Gao Y., Cao Y., Yang D., Luo X., Tang Y., Li H., Sensitivity and Selectivity Determination of Bisphenol A Using SWCNT–CD Conjugate Modified Glassy Carbon Electrode, J. Hazard. Mater., 199: 111-118 (2012).
[25] Zhang Y., Wang L., Lu D., Shi X., Wang C., Duan X., Sensitive Determination of Bisphenol a Base on Arginine Functionalized Nanocomposite Graphene Film, Electrochim. Acta, 80: 77-83 (2012).
[26] Fernández, L., Borrás, C., Carrero, H., Electrochemical Behavior of Phenol in Alkaline Media at Hydrotalcite-Like Clay/Anionic Surfactants/Glassy Carbon Modified Electrode, Electrochim. Acta, 52(3): 872-884 (2006).
[30] Cosio M.S., Pellicanò A., Brunetti B., Fuenmayor C. A., A Simple Hydroxylated Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for Rapid Amperometric Detection of Bisphenol A, Sens. Actuat. B: Chem.246: 673-679 (2017).
[31] Li H., Wang W., Lv Q., Xi G., Bai H., Zhang Q., Disposable Paper-Based Electrochemical Sensor Based on Stacked Gold Nanoparticles Supported Carbon Nanotubes for the Determination of Bisphenol AElectrochem. Commun.68: 104-107 (2016)
[34] Xin X., Sun S., Li H., Wang M., Jia R., Electrochemical Bisphenol A Sensor Based on Core–Shell Multiwalled Carbon Nanotubes/Graphene Oxide Nanoribbons, Sens. Actuat. B: Chem.209: 275-280 (2015).