Synthesize, Optimization, and Evaluation of Fe-Co on Graphene Substrate in the Hydrogen Evolution Reaction

Document Type : Research Article

Authors

Faculty of Chemistry, Isfahan University of Technology, Isfahan, I.R. IRAN

Abstract

In this study, the FeCo/rGO was synthesized by a solvothermal procedure and evaluated as the hydrogen evolution reaction (HER) electrocatalyst in alkaline media. In this sample, the percentages of iron and cobalt were varied to determine the optimized percentage of metals in the alloy. The activities of iron-cobalt alloy catalysts were evaluated by different electrochemical techniques in KOH (1M). The CV and LSV results demonstrated the best electrochemical activity of Fe0.5Co0.5/rGO among all investigated samples. Fe0.5Co0.5/rGO showed the onset overpotential of -129 mV, the overpotential of -245 mV at the current density of 10 mA/cm2, and the Tafel slope of 165 mV/dec. Also, XRD, TEM, and FT-IR techniques were employed to investigate the structure of prepared samples. The results showed the cubic phase with the nanoparticles at the dimensions of 36 nm for the synthesized of iron-cobalt alloy.

Keywords

Main Subjects


[1] Gupta  R.B.," Hydrogen Fuel: Production, Transport, and Storage'', CRC Press(2008).
[2] Taylor  J.R.,''Risk Analysis for Process Plant, Pipelines and Transport'', Routledge (2003).
[3] Luo Q., Peng M., Sun X., Luo Y., Asiri  A.M., Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nife Nanosheets FilmInternational Journal of Hydrogen Energy41(21): 8785-8792 (2016).
[4] Godula-Jopek  A.,''Hydrogen Production: by Electrolysis'', John Wiley & Sons, Inc. (2015).
[5] Wietschel  M., Ball  M. and Seydel  P., "Hydrogen TodayThe Hydrogen Economy". CambridgeUniversity Press, Cambridge, 254-270 (2009).
[6] Lueking  A.D., Yang  R.T., Hydrogen Spillover to Enhance Hydrogen Storage—Study of the Effect of Carbon Physicochemical PropertiesApplied Catalysis A: General265(2): 259-268 (2004).
[7] Bardal  E.,'' Corrosion and Protection'', Springer Science & Business Media (2007).
[10] Li S., Wang  Y., Peng  S., Zhang  L., Al‐Enizi, A.M., Zhang, H., Sun, X. and Zheng, G., Co–Ni‐Based Nanotubes/Nanosheets as Efficient Water Splitting ElectrocatalystsAdvanced Energy Materials6(3): (2016).
[11] قنبرلو، ح؛ روشن ضمیر، س؛ پرنیان، م ج؛ مقایسه فعالیت کاتالیستهای دو فلزی NG/Co-Fe و MWCNT/Co-Fe برای واکنش احیای اکسیژن در کاتد پیلهای سوختی، نشریه شیمی و مهندسی شیمی ایران، 36:151-162 (2017).
[12]  کوشکی، ع؛ روشن ضمیر، س؛ بهینه سازی لایه ی کاتالیست کاتدی در پیلهای سوختی غشای تبادل پروتون، نشریه شیمی و مهندسی شیمی ایران، 34: 21-30  (2015).
[13] Zhou  W., Jia  J., Lu  J., Yang  L., Hou  D., Li  G. Chen  S., Recent Developments of Carbon-Based Electrocatalysts for Hydrogen Evolution ReactionNano Energy28: 29-43  (2016).
[14] Ma W., Ma R., Wang  C., Liang  J., Liu  X., Zhou  K. Sasaki  T., A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of WaterACS Nano9(2): 1977-1984 (2015)
[15] Yan Y., Xia B.Y., Zhao B., Wang X., A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water SplittingJournal of Materials Chemistry A4(45): 17587-17603 (2016).
[16] Hummers Jr, W.S. and Offeman R.E., Preparation of Graphitic OxideJournal of the American Chemical Society80(6):  1339-1339 (1958).
[18] Gong M., Zhou W., Tsai M.-C., Zhou J., Guan M., Lin M.-C., Zhang B., Hu Y., Wang D.-Y., Yang J., Nanoscale Nickel Oxide/Nickel Heterostructures for Active Hydrogen Evolution ElectrocatalysisNature Communications5: 4695 (2014).
[19] Gong M., Zhou W., Kenney M.J., Kapusta R., Cowley S., Wu  Y., Lu  B., Lin  M.C., Wang  D.Y. and Yang  J., Blending Cr2O3 into a Nio–Ni Electrocatalyst for Sustained Water SplittingAngewandte Chemie127(41): 12157-12161 (2015).
[20] McKone  J.R., Sadtler  B.F., Werlang  C.A., Lewis  N.S., Gray  H.B., Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen EvolutionACS Catalysis,  3(2): 166-169  (2013).
[21] Wang  H., Lee  H.-W., Deng  Y., Lu  Z., Hsu  P.-C., Liu  Y., Lin  D., Cui  Y., Bifunctional Non-Noble Metal Oxide Nanoparticle Electrocatalysts Through Lithium-Induced Conversion for Overall Water SplittingNature Communications6: (2015).
[22] Müller  C.I., Rauscher T., Schmidt A., Schubert T., Weißgärber T., Kieback B., Röntzsch L., Electrochemical Investigations on Amorphous Fe-Base Alloys for Alkaline Water ElectrolysisInternational Journal of Hydrogen Energy,  39(17): 8926-8937 (2014).
[23] Zheng  Y., Jiao  Y., Li  L.H., Xing  T., Chen Y., Jaroniec, M., Qiao S.Z., Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen EvolutionACS Nano8(5): 5290-5296 (2014).
[24] Wei L., Karahan H.E., Goh K., Jiang W., Yu D., Birer Ö., Jiang R., Chen Y., A High-Performance Metal-Free Hydrogen-Evolution Reaction Electrocatalyst from Bacterium Derived CarbonJournal of Materials Chemistry A3(14): 7210-7214 (2015).
[25] Zhiani  M., Jalili  F., Kamali  S., In Situ Cathode Polarization Measurement in Alkaline Anion Exchange Membrane Water Electrolyzer Equipped with a Pdnifeco/C-Ceria Hydrogen Evolution ElectrocatalystInternational Journal of Hydrogen Energy42(43): 26563-26574 (2017).