Thermal Evaluation of Using Thermosyphon Heat Exchangers Instead of Ljungstrom in Boiler of Mashhad Steam Power Plant

Document Type : Research Article

Authors

1 Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN

2 Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN

3 Department of Chemical Engineering, Hakim Sabzevari University, Sabzevar, I.R. IRAN

Abstract

Ljungstrom is used in steam power plants for heating of boiler’s air and increase its temperature to around combustion temperature by energy recovery of outlet smoke. Due to moving parts and therefore high depreciation, the main drawback of Ljungstroms is the possibility of air leakage into the smoke channel (more than 20%) which leads to an increase in the passing air through the fans and reduction of generating energy of power plants. On the other hand, a wickless heat pipe or thermosyphon is a thermal spreader with no moving parts and no external control. Thereforethe application of thermosyphon heat exchangers instead of conventional Ljungstroms can be considered as a reasonable suggestion. In this study, the  Ljungstrom of Mashhad steam power plant with specified geometry (surface area: 12040 m2) and operation conditions (thermal performance coefficient: 71%) is considered and the final goal is the design of thermosyphon heat exchanger systems with different geometries in case of pipe size and materials, working fluid, the number of pipes, and transverse and longitudinal pitch. The comparison of designed thermosyphon heat exchangers with Ljungstroms in case of required thermal surfaces and occupied volume is investigated too. In this research, two approaches with different working fluids have been considered. The second design with 522 heat pipes which were charged by mercury showed better performance than the first design which was made with 900 heat pipes and charged by thermex as the working media. Reduction of the required heat transfer surface, prevention of air leakage to the air stream, and elimination of electrical energy used by moving parts of Ljungstrom are some benefits of this study.

Keywords

Main Subjects


[1] Skiepko T., Effect of Parameter Values on Gas and Matrix Temperature Fields In Rotary Heat Exchangers, Int. J. of Heat and Mass Transfer, 32: 1443-1472 (1988).
[2] “The Ljungstrom Air Preheater 1920, an International Historic Mechanical Engineering Landmark”, American Society of Mechanical Engineers, (1995).
[4] آب روشن حمید؛ سربندی فراهانی محمد ابراهیم، "محدودیت تولید ناشی از نشتی ژانگستروم در نیروگاه بخاری بندرعباسسومین کنفرانس نیروگاه های برق، محمودآباد، (1389).
[6] Buyukalaca O., Yilmaz T., Influence of Rotational Speed on Effectiveness of Rotary-Type Heat Exchangers, Heat Mass Transfer, 38: 441-447 (2002).
[7] Bach I., Yin C., “Analytical and Numerical Investigation of a Rotary Regenerator”, AAU - Institute of Energy Technology, (2007).
[8] Drobnic B., Oman J., Tuma M., A Numerical Model for the Analyses of Heat Transfer and Leakages in a Rotary Air Preheater, Heat Mass Transfer, 47: 5001-5009 (2006).
[9] Musavi M., Passandideh-Fard M., Ghazikhani M., “Numerical Simulation of Fluid Flow and Heat Transfer in a Rotary Regenerator”, The 16th Annual Conference of the CFD Society of Canada, (2008).
[10] Netramoni Baruah N.B., Prasanna Kumar G.V., Numerical Modeling of Regenerative Rotary Heat Exchanger: A Review, J. Biosystems Eng., 42: 44-55 (2017).
[11] Noie-Baghban S, Majideian G., Waste Heat Recovery Using Heat Pipe Heat Exchanger (HPHE) for Surgery Rooms in Hospitals. Appl. Therm. Eng., 20:1271–1282 (2000).
[12] سرمستی امامی محمدرضا ، نوعی حسین ، شکری روح الله، "شبیه سازی و بررسی اقتصادی کاربرد لوله‌های گرمایی در سیستم‌های تهویه مطبوعدهمین کنگره مهندسی شیمی ایران، زاهدان، (1384).
[13] Abd El-Baky M.A., Mohamed M.M., Heat Pipe Heat Exchanger for Heat Recovery in Air Conditioning, Appl. Therm. Eng., 27: 795–801 (2007).
[14] Martinez F.J.R., Plasencia M.A.A., Gomez E.V., Diez F.V., Martin R.H., Design and Experimental Study of Mixed Energy Recovery System, Heat Pipe and Indirect Evaporative Equipment for Air Conditioning, Energy and Buildings, 35: 1021–1030 (2002).
[15] Strumpf H.J., Stillwagon T.L., Kotchick D.M., Coombs M.G., Advanced Industrial Ceramic Heat Pipe Recuperators, Heat Recovery Systems and CHP, 8: 235-246 (1988).
[16] Hack N., Unz S., Bechmann M., Ceramic Heat Pipe High Temperature Application, Energy Procedia, 120: 140-148 (2017).
[17] JieZhao, 1D-ZhongYuan, D-WeiTang, Yu-YanJiang, Heat Transfer Characteristics of a Concentric Annular High Temperature Heat Pipe Under Anti-Gravity Conditions, Applied Thermal Engineering, 148: 817-824 (2019).
[18] Zare Aliabadi, H., Atashi, H., Experimental Investigation on Hydrodynamic and Thermal Performance of a Gas-Liquid Thermosyphon, Iran. J. Chem. Chem. Eng. (IJCCE), 27(3): 115-123 (2008).
[19] Reay D.A., Kew P.A., Mc Glen R.J., “Heat Pipes, Theory, Design and Application”, 6th ed., Elsevier, U.K., (2014).
[20] معرفت مهدی؛ قائم مقامی سیدجلال؛ خداویسی صادق، طراحی و ساخت مبدل حرارتی مایع –گاز با استفاده از لوله های گرمایی، نشریه انرژی ایران، (17)8 : صفحه 41 تا 51 (1382)
[21] Faghri A., “Heat Pipe Science and Technology”, Taylor & Francis, USA, (1995).
[22] Bergman T.L., Lavine A.S., Incropera F.P., Dewitt D.P., “Fundamental of Heat and Mass Transfer”, 7 th ed., John Wiley & Sons Inc., (2011).
[23] Silverstein C.C., “Design and Technology of Heat Pipes for Cooling and Heat Exchanger”, John Wiley & Sons Inc., (1994).
[24] Kays W.M., London A.L., “Compact Heat Exchanger”, 3rd ed., McGraw-Hill, New York, (1984).
[25] Gobic I., Gaspersic B., Corresponding States of Correlation for Maximum Heat Flux in Two-Phase Closed Thermosyphon, Refrigeration, 20: 402-410 (1997).
[27] Khandekar S., Joshi Y.M., Mehta B., Thermal Performance of Closed Two-Phase Thermosyphon Using Nanofluids, Thermal Sciences, 47: 659-667 (2008).
[28] اخوان ثالث زینب؛ شاهمردان محمد محسن؛ هاشمیان سید مجید، "بررسی عددی انتقال حرارت در پیش گرمکن هوا، ژانگستروماولین همایش ملی توسعه تکنولوژی در صنایع نفت، گاز و پتروشیمی، (1389).