Molecular Structural Study and Solvent Effects on Menthol and Carvacrol Compounds: DFT Studies

Document Type : Research Article


1 Department of Chemistry, Faculty of Science, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN

2 Department of Chemistry, Ayatollah Boroujerdi University, Boroujerd, I.R. IRAN


Menthol the most important ingredient in mint and carvacrol essential oil is an important essential nutrient of thyme. Carvacrol and menthol compounds are two important compounds with many medicinal properties, one of their important properties are being antioxidant, which results in the widespread use of these two. The aim of this study was to investigate the structural parameters, HOMO-LUMO energy gap, polarization, hardness, chemical potential, electron density index, and charge of two antioxidant compounds of menthol and carvacrol in the gas phase and in methanol DMSO and dichloromethane solvents. The calculations are performed using the functional density theory with the B3LYP method and using the base set of 6-311G + (d, p). According to the calculations, for menthol and carvacrol compounds the energy gap and hardness are the highest in the DMSO solvent and the lowest in the gas phasewere obtained. The presence of solvent in menthol increased chemical hardness and for carvacrol, the solvent was no significant effect on chemical hardness. A comparison of the chemical potential of menthol and carvacrol compounds showed that the reactivity of carvacrol more than menthol is due to the low chemical potential of carvacrol.The softness and electronaphinity  for menthol in the gas phase were the highest and in carvacrol was not observed a lot of difference in gas and solvent phase.


Main Subjects

 [1] Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., Heinonen M., Antioxidant Activity of Plant Extracts Containing Phenolic Compounds, J. Agric. Food Chem, 47(10): 3954-62  (1999).
[2] Zheng W., Wang S.Y., Antioxidant Activity and Phenolic Compounds in Selected Herbs, J. Agric. Food Chem, 49(11): 5165-5170 (2001).
[3] Grzeszczuk M., Jadczak D., Estimation of Biological Value of Some Species of Mint,  Herba Polonica, 55(3):193-199 (2009). 
[4] Bastaki S.M.,  Adeghate E., Amir N., Ojha S., Oz M., Menthol Inhibits Oxidative Stress and Inflammation in Acetic Acid-Induced Colitis in Rat Colonic Mucosa, Am. J. Transl. Res., 10(12):4210-4222 (2018).
 [5] Stringaro A., Colone M., Angiolella L., Antioxidant, Antifungal, Antibiofilm, and CytotoxicActivities of Mentha spp. Essential Oils, Medicines, 5(4):112-127 (2018).
[6] طاهرخانی٬ محبوبه ؛ مسعودی٬ شیوا؛ کرمی نیا٬ مهدی؛  روستائیان٬ عبدالحسین؛ بررسی ترکیب‌های تشکیل دهنده، فعالیت ضد میکروبی، آنتی اکسیدانی و محتوای فنولی روغن اسانسی به دست آمده از اندام هوایی گیاه  Phlomis aucheri Boiss رویشی در ایران٬ نشریه شیمی و مهندسی شیمی ایران ، (4) 33 : 11 تا 17 (1393).
[7] صمدی زاده، مرجانه؛ علیزاده، شیرین؛ کشاورز، شهریار؛ سنتز روی دی آلکیل دی تیو فسفات ها به عنوان ماده افزودنی به روغن موتور و بررسی ویژگی­های آنتی اکسیدانی و ضد سایشی آن­ها، نشریه شیمی و مهندسی شیمی ایران، (4) 36:  71 تا 76  (1396).
[8] نورالدینی، مهدی؛ نورالدین، محمد؛ سلامی، محمود؛ مصداقی نیا، اعظم؛ وردی، جواد؛ سلیمیان،  مرتضی؛ بررسی اثرات ضد دردی عرق نعناع در موش صحرایی نر،  فصلنامه علمی ـ پژوهشی فیض، (4)10:  19 تا 23  (1385).
[9] Samsam-Shariat H., "Collection of Medicinal Plants", 2nd ed. Isfahan: Mani Pub, (2007).
[10] Brain K.R., Green D.M., Dykes P.J., Marks R., Bola T.S., The role of Menthol in Skin Penetration from Topical Formulations of Ibuprofen 5% in Vivo, Skin Pharmacol. Physiol, 19(1): 17–21 (2006).
[11] Haeseler G., Maue D., Grosskreutz J., Bufler J., Nentwig B., Piepenbrock S., Dengler R., Leuwer M.,Voltage-Dependent Block of Neuronal and Skeletal Muscle Sodium Channels by Thymol and Menthol, Eur. J. Anaesthes, 19(8): 571–579 (2002).
[12]  Watt Erin E., Betts Brooke A., Kotey Francesca O., Humbert D.J., Griffith T.N., Kelly E.W., Veneskey  K.C., Gill N., Rowan K.C., Menthol Shares General Anesthetic Activity and Sites of Action on the GABAA Receptor with the Intravenous Agent, Propofol,  Eur. J. Pharmacol, 590 (1–3): 120–126  (2008).
[13] Freires  I.A., Denny C., Benso B., de Alencar S.M., Rosalen P.L., Antibacterial Activity of Essential Oils and Their Isolated Constituents Against Cariogenic Bacteria: A Systematic Review, Molecules, 20(4): 7329–7358  (2015).
[14]  Hiki N., Kaminishi M., Hasunuma T., Nakamura M., Nomura S., Yahagi N., Tajiri H., Suzuki H., A Phase I Study Evaluating Tolerability, Pharmacokinetics, and Preliminary Efficacy of L-Menthol in Upper Gastrointestinal Endoscopy, Clin. Pharmacol. Therapeu, 90(2): 221–228 (2011).
[15] Vladić J., Zeković Z., Jokić S., Svilović S., Kovačević S., Vidović S., Winter Savory: Supercritical Carbon Dioxide Extraction and Mathematical Modeling of Extraction Process, J. Supercrit. Fluids, 117: 89–97 (2016).
[16] Lima Mda S., Quintans-Júnior L.J., de Santana W.A., Martins Kaneto  C., Pereira Soares M.B., Villarreal C.F., Antiinflammatory Effects of Carvacrol: Evidence for a Key Role of Interleukin-10, Eur. J. Pharmacol., 699(1-3): 112-117 (2013).
[18] Aydin Y.,  Kutlay O., Ari S., Duman S., Uzuner K.,  Aydin S., Hypotensive Effects of Carvacrol on the Blood Pressure of Normotensive Rats, Planta Med, 73(13): 1365-1371 (2007).
[19] Santos M.R.V., Moreira F.V., Fraga B.P., de Souza D.P., Bonjardim L.R., Quintans-Junior  L.J., Cardiovascular Effects of Monoterpenes: A Review,  Bresilian Journal of Phamacology, 21(4): 764-71 (2011).
[20] Oliveira I.S., da Silva F.V., Viana A.F., dos Santos M.R., Quintans-Junior L.J., Martins Mdo C., Gastroprotective Activity of Carvacrol on Experimentally Induced Gastric Lesions in Rodents, Naunyn Schmiedebergs Arch Pharmacol, 385(9): 899-908 (2012).
[21] Canbek M., Uyanoglu  M., Bayramoglu G., Senturk H., Erkasap N., Koken T., Effects of Carvacrol on Defects of  Ischemia-Reperfusion in the Rat Liver.  Phytomedicine, 15(6-7): 447-52 (2008).
[22] Liang W.Z., Lu C.H., Carvacrol-Induced [Ca2+]i Rise and Apoptosis in Human Glioblastoma Cells, Life Sci,  90(17-18):  703-11 (2012).
[23] Anderson J.A., Coats J.R., Acetylcholinesterase Inhibition by Nootkatone and Carvacrol in Arthropods, Pestic. Biochem. Physiol., 102(2): 124-128 (2012).
 [25] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov  A.F., Bloino J.,  Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K.,  Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta Jr, J.E, Ogliaro F., Bearpark M., Heyd  J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S.,  Tomasi J., Cossi M., Rega N., Millam  J.M., Klene M.,  Knox J.E.,  Cross J. B., Bakken V.,  Adamo C., Jaramillo J., Gomperts  R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J. W., Martin R.L., MorokumaK., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg  J.J., Dapprich S., Daniels A.D., Farkas O.; Foresman J.B., Ortiz J.V., Cioslowski J.,  Fox D.J., Gaussian, Gaussian, Inc,  Wallingford CT. (2009).
 [27] Vinod K.S.,  Periandy S., Govindarajan M., Spectroscopic Analysis of Cinnamic Acid Using Quantum Chemical Calculations, Spectrochim. Acta. A, 136: 808-817 (2015).
[28] Fleming I., "Frontier Orbitals and Organic Chemical Reactions", John Wiley & Sons Inc,  New York, 5: (1976).
[29] Fukuli K., Yonezawa T., Shingu H., A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons, J. Chem. Phys, 20(4): 722-725 (1952).
 [30] Gunasekaran S., Balaji R.A., Kumaresan S., Anand G., Srinivasan S., Experimental and Theoretical Investigations of Spectroscopic Properties of N-Acetyl-5-Methoxytryptamine, Can. J. Anal. Sci. Spectrosc, 53(4): 149-160 (2008).
[31] Sudha S., Karabacak M., Kurt M., Cinar M., Sundaraganesan N., FT-IR and FT-Raman Spectra, Vibrational Assignments, NBO Analysis and DFT Calculations of 2-Amino-4- Chlorobenzonitrile, Spectrochim. Acta A, 84(1): 184-195 (2011).
[32] RaukA., "Orbital Interaction Theory of Organic Chemistry", 2nd ed., John Wiley & Sons Inc., New York  (2001).
[33] Parr R.G., Pearson R.G., Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc, 105(26): 7512-7516 (1983).
 [34] Balachandran V.,  Mahalakshmi G., Lakshmi A., Janaki  A., DFT, FT-Raman, FT-IR, HOMO-LUMO and NBO Studies of 4-Methylmorpholine, Spectrochim. Acta. A, 97: 1101-1110, (2012).
[35] Iczkowski R.P., Margrave J.L., Electronegativity, J. Am. Chem. Soc. 83(17): 3547-3551 (1961).
[36] Zhou Z., Parr R.G., Activation Hardness: New Index for Describing the Orientation of Electrophilic Aromatic Substitution, J. Am. Chem. Soc, 112(15):  5720-5724 (1990).
[37] Liu G.H.  Parr R.G. On Atomic and Orbital Electronegativities and Hardnesses, J. Am. Chem. Soc, 117: 3179-3188   (1995).
[38] Parr R.G.  Szentpa´ly L.V.  Liu S., Electrophilicity Index, J. Am. Chem. Soc, 121: 1922-1924 (1999).
 [39] Andrés Bort, J., Bertrán Rusca, J., "Theoretical and Computational Chemistry: Foundations, Methods and Techniques", Universitat Jaume I, (2007).