Application of ZnO Nanoparticles Impregnated with Rose Bengal Dye in Photocatalytic Degradation of Phenolic Pollutants under Visible Light Irradiation

Document Type : Research Article


1 Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, I.R. IRAN


In this research, spherical ZnO nanoparticles (ZnO NPs) and also ZnO nanoparticles impregnated with Rose Bengal dye (dye/ZnO) were synthesized easily by a new method. The resulting particles with the visible light absorption ability were used as modified photocatalysts for the degradation of phenolic pollutants. ZnO nanoparticles and dye/ZnO were identified with X-Ray Diffraction (XRD) analysis, Fourier Transform InfraRed (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), thermal analysis (TGA/DSC), and UltraViolet-Visible spectroscopy (UV-Vis). The energy gap of dye/ZnO was calculated to be about 2/9eV. Experiments showed degradation of phenol by dye impregnated ZnO nanoparticles under visible light has better efficiency in comparison with the pure ZnO nanoparticles. At the time of 130 minutes, dye/ZnO nanoparticles could degrade approximately 96% of phenol, while the pure ZnO nanoparticles had 10% efficiency at the same time. The mechanism of the reaction is based on the optical excitation of both ZnO semiconductor and dye molecules and then charge transfer.


Main Subjects

[1] Dionysio D.D., Khodadust A.P., Kern A.M., Suidan M.T., Baudin I., Laine J.M., Continuous-Mode Photocatalytic Degradation of Chlorinated Phenols and Pesticides in Water Using a Bench-Scale TiO2 Rotating Disk Reactor, Appl. Catal. B: Environ., 24(3-4): 139-155 (2000).
[2] Jadhav D.N., Vanjara A.K., Removal of Phenol from Wastewater Using Sawdust, Polymerized Sawdust and Sawdust Carbon, Indian J. of Chemical Tech., 11(1): 35-41 (2004).
[3] Wang L., Wang A.Q., Adsorption Properties of Congo Red from Aqueous Solution onto N,O-Carboxymethyl-Chitosan, Biores. Technol., 99(5): 1403-1408 (2008).
[4] Wang L., Zhang J., Wang A., Removal of Methylene Blue from Aqueous Solution Using Chitosan-g-Poly(Acrylic acid)/Montmorillonite Superadsorbent Nanocomposite, Colloids Surf. A: Physicochem. Eng. Asp., 322(1-3): 47-53 (2008).
[5] Yatmaz H.C., Akyol A., Bayramoglu M., Kinetics of the Photocatalytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Suspensions, Ind. Eng. Chem. Res., 43(19): 6035-6039 (2004).
[6] قنادزاده گیلانی، حسین؛ قنادزاده گیلانی، علی؛ آزمون، پریسا؛ بررسی جذی فنل از محلولهای آبی با استفاده از کربن هسته انار، نشریه شیمی و مهندسی شیمی ایران، (4)36: 145 تا 159 (1396).
[7] Movahedi M., Mahjoub A.R., Janitabar-Darzi S., Photodegradation of Congo Red in Aqueous Solution on ZnO as an Alternative Catalyst to TiO2, J. Iran. Chem. Soc., 6(3): 570-577 (2009).
[8] Janitabar-Darzi S., Mahjoub A.R., Investigation of Phase Transformations and Photocatalytic Properties of Sol-Gel Prepared Nanostructured ZnO/TiO2 Composites, J. Alloy. Compd., 486(1-2): 805-808 (2009).
[9] Kumar S., Fedorov A.G., Gole J.L., Photodegradation of Ethylene Using Visible Light Responsive Surfaces Prepared from Titania Nanoparticle Slurries, Appl. Catal. B: Environ., 57(2): 93-107 (2005).
[11] Yoneyama H., Haga S., Yamanaka S., Photocatalytic Activities of Microcrystalline Titania Incorporated in Sheet Silicates of Clay, J. Phys. Chem., 93(12): 4833-4837 (1989).
[13] Varughese G., Jithin P.W., Usha K.T., Determination of Optical Band Gap Energy of Wurtzite ZnO: Ce Nanocrystallites, Phys. Sci. Int. J., 5(2): 146-154 (2015).
[14] Pouetedal H.R., Basati S., Characterization and Photocatalytic Activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 11-19 (2015).
[15] Asaadi N., Parhizkar M., Mohammadi Aref S., Bidadi H., The Role of Polypyrrole in Electrical Properties of ZnO-Polymer Composite Varistors, Iran. J. Chem. Chem. Eng. (IJCCE), 36(3): 65-72 (2017).
[16] Hilal H.S., Majjad L.Z., Zaatar N., El-Hamouz, A., Dye-Effect in TiO2 Catalyzed Contaminant Photo-Ddegradation: Sensitization vs. Charge-Transfer Formalism, Solid. State. Sci., 9(1): 9-15 (2007).
[17] Hara K., Horiguchi T., Kinoshita T., Sayama K., Sugihara H., Arakawa H., Highly Efficient Photon-to-Electron Conversion with Mercurochrome-Sensitized Nanoporous Oxide Semiconductor Solar Cells, Sol. Energ. Mater. Sol. Cells, 64(2): 115-134 (2000).
[18] Janitabar-Darzi S., Movahedi M., Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation, Iran. J. Chem. Chem. Eng. (IJCCE), 33(2): 55-64 (2014).