One-Step Hydrothermal Method to Synthesis WO3.0.33H2O/BiOCl Composite as an Ultraviolet and Visible Light-Activated Photocatalyst

Document Type : Research Article


Department of Physics, Jundi-Shapur University of Technology, Dezful, I.R. IRAN


In recent years, semiconductor photocatalysts have received great research interest for water purification due to their photocatalytic activity under solar light irradiation. In this study, a simple one-step hydrothermal method was used to synthesis a WO3.0.33H2O/BiOCl composite photocatalyst. The products were characterized by X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Diffuse Reflectance Spectroscopy (DRS), and N2 adsorption-desorption techniques. The photocatalytic properties of samples were investigated by photocatalytic degradation of RhB as a model pollutant under xenon lamp (55 W) and white light LED lamp (30 W) as simulated solar light and visible light sources, respectively. The results indicated that the Bi/W molar ratio has a significant effect on photocatalytic activity. The synthesized sample with Bi/W molar ratio of 1.0 displays the best photocatalytic performance compared with other samples. In the presence of 10 mg of this photocatalyst 80% of RhB solution (60 ml, 10 mg/L) could be degraded in 80 min under simulated solar light irradiation. The results indicated that the higher photocatalytic performance of dye molecules over WO3.0.33H2O/BiOCl composite could be ascribed to its larger specific surface area (26.60 m2/g), lower optical band gap (~2.21 eV) and interaction between WO3.0.33H2O and BiOCl. Also, the radical scavenger experiments exhibit that the holes (h+) and superoxide radicals (O2) are the main active species in the photocatalytic degradation process of RhB over WO3.0.33H2O/BiOCl composite photocatalyst.


Main Subjects

[1] Dong S., Feng J., Fan M., Pi Y., Hu L., Han X., Liu M., Sun J., Sun J., Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A ReviewRsc Advances, 5: 14610-14630 (2015).
[2] Qu J., Fan M., The Current State of Water Quality and Technology Development for Water Pollution Control in ChinaCritical Reviews in Environmental Science and Technology40: 519-560 (2010).
[3] Tanveer M., Guyer G.T., Solar Assisted Photo Degradation of Wastewater by Compound Parabolic Collectors: Review of Design and Operational ParametersRenewable and Sustainable Energy Reviews24: 534-543 (2013).
[4] Wang H., Zhang L., Chen Z., Hu J., Li S., Wang Z., Liu J., Wang X., Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances, Chemical Society Reviews43: 5234-5244 (2014).
[5] Opoku F., Govender K.K., Sittert C.G.E., Govender P.P., Recent Progress in the Development of Semiconductor‐Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Advanced Sustainable Systems, 1700006: 1-24 (2017).
[6] Liu S., Yin K., Ren W., Cheng B., Yu J., Tandem Photocatalytic Oxidation of Rhodamine B over Surface Fluorinated Bismuth Vanadate Crystals, Journal of Materials Chemistry22: 17759-17767 (2012).
[7] Cai H., Cheng L., Xu F., Wang H., Xu W., Li F., Fabrication of the Heterojunction Catalyst BiVO4/P25 and Its Visible-Light Photocatalytic ActivitiesRoyal Society Open Science5: 180752 (2018).
[8] Zheng Y., Chen G., Yu Y., Zhou Y., He F., Synthesis of Carbon Doped WO3.0.33H2O Hierarchical Photocatalyst with Improved Photocatalytic ActivityApplied Surface Science362: 182-190 (2016).
[9] صباغی، صمد؛ ظرافت، محمدمهدی؛ ظرافت، محمدمهدی؛ تجزیه فتوکاتالیستی فنول با استفاده از نانوکامپوزیت C-TiO2، نشریه شیمی و مهندسی شیمی ایران، (1) 37: 41 تا50 (1397).
[10] Low J., Yu J., Jaroniec M., Wageh S., Al‐Ghamdi A.A., Heterojunction PhotocatalystsAdvanced Materials29: 1601694 (2017).
[11] Bahramian, A.R., Enhanced Photocatalytic Activity of Sol-Gel Derived Coral-like TiO2 Nanostructured Thin FilmIranian Journal of Chemistry and Chemical Engineering (IJCCE)35 (2): 27-41 (2016).
 [12] Zhou Y., Zhang S., Ding Y., Zhang L., Zhang C., Zhang X., Zhao Y., Yu G., Efficient Solar Energy Harvesting and Storage Through a Robust Photocatalyst Driving Reversible Redox Reactions, Advanced Materials 103: 1802294–1802297 (2018).
[13] Gondal M.A., Xiaofeng C., Dastageer M.A., "Novel Bismuth-Oxyhalide-Based Materials and Their Applications", Springer, India  (2017).
[15] Tahmasebi N., Maleki Z., Farahnak P., Enhanced Photocatalytic Activities of Bi2WO6/BiOCl Composite Synthesized by One-Step Hydrothermal Method with the Assistance of HClMaterials Science in Semiconductor Processing89: 32-40 (2019).
[16] Li K., Liang Y., Yang J., Gao Q., Zhu Y., Liu S., Xu R., Wu X., Controllable Synthesis of {001} Facet Dependent Foursquare BiOCl Nanosheets: A High Efficiency Photocatalyst for Degradation of Methyl Orange, J. Alloy. Compd., 695: 238–249 (2017).
[17] Tahmasebi N., Madmoli S., Facile Synthesis of a WOx/CsyWO3 Heterostructured Composite as a Visible Light PhotocatalystRSC Advances8: 7014-7021 (2018).
[18] Wu X., Wang J., Zhang G., Katsumata K.I., Yanagisawa K., Sato T., Yin S., Series of MxWO3/ZnO (M= K, Rb, NH4) Nanocomposites: Combination of Energy Saving and Environmental Decontamination FunctionsApplied Catalysis B: Environmental201: 128-136 (2017).
[19] Li G., Jiang B., Xiao S., Lian Z., Zhang D., Jimmy C.Y., Li H., An Efficient Dye-Sensitized BiOCl Photocatalyst for Air and Water Purification under Visible Light IrradiationEnvironmental Science: Processes & Impacts16: 1975-1980 (2014).
[20] Liu W., Shang Y., Zhu A., Tan P., Liu Y., Qiao L., Chu D., Xiong X., J. Pan, Enhanced Performance of Doped BiOCl Nanoplates for Photocatalysis: Understanding from Doping Insight Into Improved Spatial Carrier SeparationJournal of Materials Chemistry A5: 12542-12549 (2017).
[21] Di J., Xia J., Yin S., Xu H., Xu L., Xu Y., He M., Li H., One-Pot Solvothermal Synthesis of Cu-Modified BiOCl via a Cu-Containing Ionic Liquid and Its Visible-Light Photocatalytic PropertiesRSC Advances4: 14281-14290 (2014).
[22] Di J., Xia J., Ji M., Wang B., Yin S., Zhang Q., Chen Z., Li H., Carbon Quantum Dots Modified BiOCl Ultrathin Nanosheets with Enhanced Molecular Oxygen Activation Ability for Broad Spectrum Photocatalytic Properties and Mechanism InsightACS Applied Materials & Interfaces7: 20111-20123 (2015).
[23] Li W., Tian Y., Li H., Zhao C., Zhang B., Zhang H., Geng W., Zhang Q., Novel BiOCl/TiO2 Hierarchical Composites: Synthesis, Characterization and Application on PhotocatalysisApplied Catalysis A: General516: 81-89 (2016).
[24] Fu R., Zeng X., Ma L., Gao S., Wang Q., Wang Z., Huang B., Dai Y., Lu J., Enhanced Photocatalytic and Photoelectrochemical Activities of Reduced TiO2−x/BiOCl HeterojunctionsJournal of Power Sources312: 12-22 (2016).
[25] Han X., Dong S., Yu C., Wang Y., Yang K., Sun J., Controllable Synthesis of Sn-Doped BiOCl for Efficient Photocatalytic Degradation of Mixed-Dye Wastewater under Natural Sunlight IrradiationJournal of Alloys and Compounds685: 997-1007 (2016).
[26] Yang W., Wen Y., Zeng D., Wang Q., Chen R., Wang W., Shan B., Interfacial Charge Transfer and Enhanced Photocatalytic Performance for the Heterojunction WO3/BiOCl: First-Principles StudyJournal of Materials Chemistry A2: 20770-20775 (2014).
[27] Huang Z.F., Song J., Pan L., Jia X., Li Z., Zou J.J., Zhang X., Wang L., W18O49 Nanowire Alignments with a BiOCl Shell as an Efficient PhotocatalystNanoscale6: 8865-8872 (2014).
[28] Yang W., Wen Y., Chen R., Zeng D., Shan, B., Study of Structural, Electronic and Optical Properties of Tungsten Doped Bismuth Oxychloride by DFT CalculationsPhysical Chemistry Chemical Physics16: 21349-21355 (2014).
[29] Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report),. Pure and Applied Chemistry 87: 1051-1069 (2015).
[30] Huang L., Fang W., Yang Y., Wu J., Yu H., Dong X., Wang T., Liu Z., Zhao B., Three-Dimensional MoO3 Nanoflowers Assembled with Nanosheets for Rhodamine B Degradation under Visible LightMaterials Research Bulletin108: 38-45 (2018).
[31] Zhang L., Niu C.G., Xie G.X., Wen X.J., Zhang X.G.,  Zeng G.M., Controlled Growth of BiOCl with Large {010} Facets for Dye Self-Photosensitization Photocatalytic Fuel Cells ApplicationACS Sustainable Chemistry & Engineering5: 4619-4629 (2017).
[32] Zou L.X., Liu Q.C., Zhong Q., Bai X.M., Dong L.J., The Characterization and Photocatalytic Properties of Mesoporous WO3.0.33H2O.NiO Nanocrystalline Synthesized through Using the Microwave Radiation Method, In Advanced Materials Research, 60: 480-485 (2009).
[33] Huizhong A., Yi D.U., Tianmin W.A.N.G., Cong W.A.N.G., Weichang H.A.O., Zhang J., Photocatalytic Properties of Biox (X= Cl, Br, and I)Rare Metals27: 243-250 (2008).
[34] Chen L., Huang R., Xiong M., Yuan Q., He J., Jia J., Yao M.Y., Luo S.L., Au C.T., Yin S.F., Room-Temperature Synthesis of Flower-Like BiOX (X=Cl, Br, I) Hierarchical Structures and Their Visible-Light Photocatalytic ActivityInorganic Chemistry52: 11118-11125 (2013).
[35] Ao Y., Wang K., Wang P., Wang C., Hou J., Fabrication of p-type BiOCl/n-Type La2Ti2O7 Facet-Coupling Heterostructure with Enhanced Photocatalytic PerformanceRsc Advances6: 48599-48609 (2016).
[36] Wang K., Shao C., Li X., Zhang X., Lu N., Miao F., Liu Y., Hierarchical Heterostructures of p-Type BiOCl Nanosheets on Electrospun N-Type TiO2 Nanofibers with Enhanced Photocatalytic ActivityCatalysis Communications67: 6-10 (2015).