Mass Transfer Modeling for Cadmium Adsorption onto Activated Carbon Produced from Grape Waste

Document Type : Research Article


Chemical Engineering Department, Yasouj University, Yasouj, I.R. IRAN


Today, the separation of various pollutants including heavy metals from industrial wastes is very important. One of the separation methods is adsorption that has attracted great attention in recent years. In this research, cadmium separation from aqueous solution using adsorption onto activated carbon was investigated and mass transfer performed is modeled using a mathematic model. Activated carbon was produced by the chemical activation of grape stalks waste. Identification methods including BET, FT-IR, and SEM were applied to characterize the produced carbon. The effects of process parameters including solution pH, contact time, initial concentration of cadmium, and temperature were evaluated. Results indicated that the adsorption process  is a monolayer process and the adsorption capacity of prepared activated carbon was 142 mg/L. In order to determine the mass transfer parameters, a mat hematical model was presented and the mass transfer coefficients to transfer cadmium ions from the bulk solution to adsorbing onto activated carbon surface were calculated by solving this model. The sensitivity analysis showed that the external mass transfer diffusion and pore diffusion are more important steps. Also, the regeneration and reusability of adsorbent were investigated.


Main Subjects

[1] World Health Organization (WHO). "Guidelines for Drinking Water Quality: Recommendations", vol. 1, 3rd ed., World Health Organisation, Geneva (2008).
[3] Mehrabi N., Soleimani M., Madadi Yeganeh M., Sharififard H., Parameter Optimization for Nitrate Removal from Water Using Activated Carbon and Composite of Activated Carbon and Fe2O3 Nanoparticles, RSC Adv., 5: 51470-51482 (2015)
[7] Kaghazchi T., Asasian Kolur N., Soleimani M., Licorice Residue and Pistachio-Nut Shell Mixture: A promising Precursor for Activated Carbon, J. Ind. Eng. Chem., 16: 368–374 (2010)
[8] Choong T.S.Y., Wong T.N., Chuah T.G., Azni I., Film-Pore-Concentration-Dependent Surface Diffusion Model for the Adsorption of Dye onto Palm Kernel Shell Activated Carbon, J. Colloid Interface Sci., 301: 436-440 (2006)
[9] Kavand M., Asasian N., Soleimani M., Kaghazci T., Bardestani R., Film-Pore-[Concentration-Dependent] Surface Diffusion Model for Heavy Metal Ions Adsorption: Single and Multi-Component Systems, Process Saf. Environ., 107: 486-497 (2017)
[10] Ponnusami V., Rajan K.S., Srivastava S.N., Application of Film-Pore Diffusion Model for Methylene Blue Adsorption onto Plant Leaf Powders, Chem. Eng. J., 163: 236-242 (2010)
[11] Tawalbeh M., Allawzi M.A., Kandah M.I., Production of Activated Carbon from Jojoba Seed Residue by Chemical Activation Using A Static Bed Reactor, J. Appl. Sci., 5: 482-487 (2005)
[12] Erdogan S., Basar C.A., Onal Y., Particle Size Effect of Raw Material on the Pore Structure of Carbon Support And Its Adsorption Capability, Particul. Sci. Technol., 35: 330-337 (2017)
[13] Sharififard H., Soleimani M., Zokaee Ashtiani F., Evaluation of Activated Carbon and Bio-polymer Modified Activated Carbon Performance for Palladium and Platinum Removal, J. Taiwan Inst. Chem. E., 43: 696-703 (2012)
[14] European Council of Chemical Manufacturers Federations, "Test Methods for Activated Carbon", Berlin, Germany (1986)
[15] Sharififard H., Soleimani M., Modeling and Experimental Study of Vanadium Adsorption by Iron-nanoparticle-Impregnated Activated Carbon, Res. Chem. Intermediat., 43: 2501-2516 (2017)
[16] حکیمه شریفی فرد، “جذب و واجذب وانادیم از محلول آبی با استفاده از جاذب کربنی اصلاح شده با ذرات نانو آهن”، رساله دکتری، دانشگاه صنعتی امیرکبیر، پاییز 1395.
[17] Ocampo-Perez R., Leyva-Ramos R., Mendoza-Barron J., Guerrero-Coronado R.M., Adsorption Rate of Phenol from Aqueous Solution onto Organobentonite: Surface Diffusion and Kinetic Models, J. Colloid Interface Sci., 364 (1): 195-204 (2011).
[18] McKay G., Allen S.J., McConvey I.F., Otterburn M.S., Transport Process in the Sorption of Colored Ions by Peat Particles, J. Colloid Interface Sci., 80: 323-339 (1981).
[19] Moretti M.M.D.S., Bocchini-Martins D.A., Nunes C.D.C.C., Villena M.A., Perrone O.M., Silva R.D., Boscolo M., Gomes E., Pre-treatment of Sugarcane Bagasse with Microwaves Irradiation and Its Effects on the Structure and on Enzymatic Hydrolysis, Appl. Energ., 122: 189–195 (2014)
[21] Sharififard H., Pepe F., Aprea P., Gennaro B., Chemical Modification of Activated Carbon Surface with Iron Functional Groups for Efficient Separation of Vanadium: Batch and Column Study, Res. Chem. Intermediate., 43: 6553-6570 (2017)
[22] Prabhu S.M., Meenakshi S., Synthesis of Surface Coated Hydroxyapatite Powders for Fluoride Removal from Aqueous Solution, Powder Technol., 268: 306–315 (2014)
[24] Orolı´nova Z., Mockovcˇiakova A.R., Kvarla J.S., Sorption of Cadmium (II) from Aqueous Solution by Magnetic Clay Composite, Desalin. Water Treat., 24: 284–292 (2010)
[25] Azouaoua N., Sadaoui Z., Djaafri A., Mokaddem H., Adsorption of Cadmium from Aqueous Solution onto Untreated Coffee Grounds: Equilibrium, Kinetics and Thermodynamics, J. Hazard. Mater., 184: 126–134 (2010)
[26] Wang F.Y., Wang H., Ma J.W., Adsorption of Cadmium (II) Ions from Aqueous Solution by a New Low-Cost Adsorbent--Bamboo Charcoal, J. Hazard. Mater., 177: 300–306 (2010)
[28] Chen K., He J., Li Y., Cai X., Zhang K., Liu T., Hu Y., Lin D., Kong L., Liu J., Removal of Cadmium and Lead Ions from Water by Sulfonated Magnetic Nanoparticle Adsorbents, J. Colloid Interface Sci., 494: 307-316 (2017)
[29] Rouibaha K., Meniai A.H., Deffousa L., Bencheikh Lehocine M., Chromium VI and Cadmium II Removal from Aqueous Solutions by Olive Stones, Desalin. Water Treat., 16: 393-401 (2010)
[31] Bel-hadjltaief H., Sdiri A., Ltaief W., Da-costa P., Galvez M.E., Zina B., Efficient Removal of Cadmium and 2-chlorophenol in Aqueous Systems by Natural Clay: Adsorption and Photo-Fenton Degradation Processes, C. R. Chim., 21: 253-262 (2018)
[32] حمیدی، عباس؛ خزاعلی، الهه؛ خضعلی، فریدون، مطالعه ترمودینامیک و هم دماهای جذب سطحی کادمیوم (II) بر روی نانوذره های روی اکسید، نشریه شیمی و مهندسی شیمی ایران، (4)34: 23تا30 (1394)
[33] اهالی آباده، زهرا؛ ایران نژاد، مهدی، بررسی مدل­های سینتیکی و هم دمایی حذف کادمیوم از محلول­های آبی با کامپوزیت زئولیتی-آهنی، نشریه شیمی و مهندسی شیمی ایران، (2)35: 99تا111 (1395)
[34] Hill C.G., Root T.W., "Introduction to Chemical Engineering Kinetics and Reactor Design", 2nd ed., John Wiley & Sons Inc., New Jersey (2014)
[35] Seader J.D., Henley E.J., "Separation Process Principles", John Wiley & Sons Inc., New York (2006)
[36] Lv L., Zhang Y., Wang K., Ray A.K., Zhao X.S., Modeling of the Adsorption Breakthrough Behaviors of Pb2+ in a Fixed Bed of ETS-10 Adsorbent, J. Colloid Interface Sci., 325: 57-63 (2008)