Synthesis of Ni-Co/Al2O3-MgO Nanocatalyst via Impregnation Method Used in Hydrogen Production via Dry Reforming of Methane

Document Type : Research Article

Authors

Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, I.R. IRAN

Abstract

In this study, Ni-Co/Al2O3-MgO nanocatalysts with two Al/Mg ratios of 0.5 and 5 were synthesized successfully using the impregnation method. The synthesized nanocatalysts were characterized by XRD, FESEM, BET, and FT-IR. The Ni-Co/Al2O3-MgO (Al/Mg=5) nanocatalyst showed high activity among other samples, which is due to its desired textural properties. XRD analysis illustrated that the Ni-Co/Al2O3-MgO (Al/Mg=5) nanocatalyst has smaller and well-dispersed NiO crystals. Also, the Ni-Co/Al2O3-MgO (Al/Mg=5) nanocatalyst due to BET analysis has a high specific area. According to the FESEM images, nanoscale particles with uniform surface size distribution have been observed in the Ni-Co/Al2O3-MgO (Al/Mg=5) nanocatalyst. During the 600 min stability test, feed conversion, and H2/CO molar ratio remained at constant values for the superior nanocatalyst.

Keywords

Main Subjects


[3] Han S.J., Song J.H., Bang Y., Yoo J., Park S., Kang K.H., Song I.K., Hydrogen Production by Steam Reforming of Ethanol over Mesoporous Cu-Ni-Al2O3-ZrO2 Xerogel CatalystsInt. J. Hydrogen Energy41(4): 2554-2563 (2016).
[4] Wei Q., Gao X., Liu G., Yang R., Zhang H., Yang G., Yoneyama Y., Tsubaki N., Facile One-Step Synthesis of Mesoporous Ni-Mg-Al Catalyst for Syngas Production using Coupled Methane Reforming ProcessFuel211: 1-10 (2018).
[5] Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N., Catalyst Design for Dry Reforming of Methane: Analysis ReviewRen. Sus. Energy Rev.82: 2570-2585 (2018).
[6] Gronchi P., Centola P., Rosso R.D., Dry Reforming of CH4 with Ni and Rh Metal Catalysts Supported on SiO2 and La203Appl. Catal., A152(1): 83-92 (1997).
[7] Akbari E., Alavi S.M., Rezaei M., CeO2 Promoted Ni-MgO-Al2O3 Nanocatalysts for Carbon Dioxide Reforming of MethaneJ. CO2 Util.24: 128-138 (2018).
[8] Portugal Jr U.L., Marques C.M.P., Araujo E.C.C., Morales E.V., Giotto M.V., Bueno J.M.C., CO2 Reforming of Methane over Zeolite-Y Supported Ruthenium CatalystsAppl. Catal., A193(1-2): 173-183 (2000).
[9] Shishido T., Sukenobu M., Morioka H., Furukawa R., Shirahase H., Takehira K., CO2 Reforming of CH4 over Ni/Mg-Al Oxide Catalysts Prepared by Solid Phase Crystallization Method from Mg-Al Hydrotalcite-Like PrecursorsCatal. Lett.73: 21-26 (2001).
[10] Jeong H., Kim K.I., Kim D., Song I.K., Effect of Promoters in the Methane Reforming with Carbon Dioxide to Synthesis Gas over Ni/HY Catalysts,  J. Mol. Catal. A: Chem.246(1-2): 43-48 (2006).
[11] Kaengsilalai A., Luengnaruemitchai A., Jitkarnka S., Wongkasemjit S., Potential of Ni Supported on KH Zeolite Catalysts for Carbon Dioxide Reforming of MethaneJ. Power Sources165(1): 347-352 (2007).
[13] Fakeeha A.H., Khan W.U., Al-Fatesh A.S., Abasaeed A.E., Stabilities of Zeolite Supported Ni Catalysts for Dry Reforming of Methane Ni Catalysts for Dry Reforming of MethaneChin. J. Catal.34(4): 764-768 (2013).
[14] Koo K.Y., Roh H.-S., Seo Y.T., Seo D.J., Yoon W.L., Park S.B., Coke Study on MgO-Promoted Ni/Al2O3 Catalyst in Combined H2O and COReforming of Methane for Gas to Liquid (GTL) ProcessAppl. Catal., A340: 183-190 (2008).
[15] Jin L., Xie T., Ma B., Li Y., Hu H., Preparation of Carbon-Ni/MgO-Al2O3 Composite Catalysts for CO2 Reforming of MethaneInt. J. Hydrogen Energy42(8): 5047-5055 (2017).
[16] Horváth É., Baán K., Varga E., Oszkó A., Vágó Á., Törő M., Erdőhelyi A., Dry Reforming of CH4 on Co/Al2O3 Catalysts Reduced at Different TemperaturesCatal. Today281: 233-240 (2017).
[17] Sharifi M., Haghighi M., Abdollahifar M., Sono-Dispersion of Bimetallic Ni-Co over Zeolite Y Used in Conversion of Greenhouse Gases CH4/CO2 to High Valued SyngasJ. Nat. Gas Sci. Eng.23: 547-558 (2015).
[18] Damyanova S., Pawelec B., Arishtirova K., Fierro J.L.G., Ni-Based Catalysts for Reforming of Methane with CO2Int. J. Hydrogen Energy37: 15-75 (2012).
[19] Nimwattanakul W., Luengnaruemitchai A., Jitkarnka S., Potential of Ni Supported on Clinoptilolite Catalysts for Carbon Dioxide Reforming of MethaneInt. J. Hydrogen Energy31: 93-100 (2006).
[20] Luengnaruemitchai A., Kaengsilalai A., Activity of Different Zeolite-Supported Ni Catalysts for Methane Reforming with Carbon Dioxide Chem. Eng. J.144(1): 96-102 (2008).
[21] Frontera P., Aloise A., Macario A., Crea F., Antonucci P., Giordano G., Nagy J., Zeolite-Supported Ni Catalyst for Methane Reforming with Carbon DioxideRes. Chem. Intermed.37: 267-279 (2011).
[22] Zou H., Chen S., Huang J., Zhao Z., Effect of Impregnation Sequence on the Catalytic Performance of NiMo Carbides for the Tri-reforming of MethaneInt. J. Hydrogen Energy42(32): 20401-20409 (2017).
[23] Luisetto I., Sarno C., De Felicis D., Basoli F., Battocchio C., Tuti S., Licoccia S., Di Bartolomeo E., Ni Supported on γ-Al2O3 Promoted by Ru for the Dry Reforming of Methane in Packed and Monolithic ReactorsFuel Process. Technol.158: 130-140 (2017).
[24] Estifaee P., Haghighi M., Babaluo A.A., Rahemi N., Fallah Jafari M., The Beneficial Use of Non-thermal Plasma in Synthesis of Ni/Al2O3-MgO Nanocatalyst Used in Hydrogen Production from Reforming of CH4/CO2 Greenhouse GasesJ. Power Sources257: 364-373 (2014).
[26] Sharifi M., Haghighi M., Rahmani F., Karimipour S., Syngas Production via Dry Reforming of CH4 over Co- and Cu-Promoted Ni/Al2O3-ZrO2 Nanocatalysts Synthesized via Sequential Impregnation and Sol-Gel MethodsJ. Nat. Gas Sci. Eng.21: 993-1004 (2014).
[27] Zhang J., Wang H., Dalai A.K., Development of Stable Bimetallic Catalysts for Carbon Dioxide Reforming of MethaneJ. Catal.249(2): 300-310 (2007).
[28] San-José-Alonso D., Juan-Juan J., Illán-Gómez M., Román-Martínez M., Ni, Co and Bimetallic Ni-Co Catalysts for the Dry Reforming of MethaneAppl. Catal., A371(1): 54-59 (2009).
[29] Pompeo F., Nichio N.N., González M.G., Montes M., Characterization of Ni/SiO2 and Ni/Li-SiO2 Catalysts for Methane Dry ReformingCatal. Today107-108: 856-862 (2005).
[30] Perego C., Villa P., Catalyst Preparation MethodsCatal. Today34: 281-305 (1997).
[31] Gac W., Denis A., Borowiecki T., Kępiński L., Methane Decomposition over Ni-MgO-Al2O3 CatalystsAppl. Catal., A357(2): 236-243 (2009).
[32] Abdollahifar M., Haghighi M., Babaluo A.A., Syngas Production via Dry Reforming of Methane over Ni/Al2O3-MgO Nanocatalyst Synthesized Using Ultrasound EnergyJ. Ind. Eng. Chem.20(4): 1845-1851 (2014).
[33] Polovka M., Polovková J., Vizárová K., Kirschnerová S., Bieliková L., Vrška M., The Application of FTIR Spectroscopy on Characterization of Paper Samples, Modified by Bookkeeper Process, Vib. Spectrosc41(1): 112-117 (2006).
[34] de Sousa F.F., de Sousa H.S., Oliveira A.C., Junior M.C., Ayala A.P., Barros E.B., Viana B.C., Oliveira A.C., Nanostructured Ni-Containing Spinel Oxides for the Dry Reforming of Methane: Effect of the Presence of Cobalt and Nickel on the Deactivation Behaviour of CatalystsInt. J. Hydrogen Energy37(4): 3201-3212 (2012).
[35] Estifaee P., Haghighi M., Mohammadi N., Rahmani F., CO Oxidation over Sonochemically Synthesized Pd-Cu/Al2O3 Nanocatalyst Used in Hydrogen Purification: Effect of Pd Loading and Ultrasound Irradiation TimeUltrason. Sonochem.21(3): 1155-1165 (2014).