A Computational Study about Reduction of Carbon Dioxide by Hydrogen Molecule over Graphene Surface Doped with Ni and N Atoms

Document Type : Research Article


Department of Chemistry, Faculty of Basic Sciences, Maragheh University, Maragheh, I.R. IRAN


Today, climate change caused by the emission of greenhouse gasses is one of the most important environmental challenges facing humankind. In this work, using density functional theory calculations, the probable reaction mechanisms for the reduction of CO2 by H2 molecule were investigated over a Ni atom incorporated nitrogen-doped graphene. Our results indicated that the Ni atom can be efficiently adsorbed over the monovacancy site in the nitrogen-doped graphene. According to the obtained results, the catalytic activity of the mentioned surface is mainly originated from the strong hybridization between the σ orbital of the hydrogen molecule and 3d orbitals of nickel. The activation energies indicated that for the reduction of CO2, the formation of carboxylate is energetically more favorable than that of the formate intermediate.


Main Subjects

[1] Lashof D.A., Ahuja D.R., Relative Contributions of Greenhouse Gas Emissions to Global Warming, Nature, 344: 529–531 (1990).
[2] Jain P.C., Greenhouse Effect and Climate Change: Scientific Basis and Overview, Renew. Energy, 3: 403-420 (1993).
[3] Centi G., Quadrelli E.A., Perathoner S., Catalysis for CO2 Conversion: A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries, Energy Environ. Sci., 6: 1711-1731 (2013).
[4] Descamps C., Bouallou C., Kanniche M., Efficiency of an Integrated Gasification Combined Cycle (IGCC) Power Plant Including CO2 Removal, Energy, 33: 874-881 (2008).
[5] Martavaltzi C.S., Lemonidou A.A., Development of New CaO Based Sorbent Materials for CO2 Removal at High Temperature, Micropo. Mesopor. Mat., 110: 119-127 (2008).
[6] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A., Two-Dimensional Gas Of Massless Dirac Fermions in Graphene, Nature, 438: 197-200 (2004).
[7] Geim A.K., Novoselov K.S., The Rise of Graphene, Nat. Mater., 6: 183-191 (2007).
[8] Sun Y., Wu Q., Shi G., Graphene-Based New Energy Materials, Energy Environ. Sci., 4: 1113-1132 (2011).
[9] تارقلی، احسان؛ موسوی خوشدل، سید مرتضی؛ رحمانی فر، محمد صفی، تأثیر نقص­های ساختاری در گرافن عامل­دار شده با گروه عاملی –COOH در کارایی ابرخازن پایه گرافنی، نشریه شیمی و مهندسی شیمی ایران، (3)35 : 33 تا 42 (1395)
[10] Marcella Poh G., Ling Ambrosi H., Zhao A., Sofer G., Šaněk Z., Khezri F., Webster B., Martin P., Noble Metal (Pd, Ru, Rh, Pt, Au, Ag) Doped Graphene Hybrids for Electrocatalysis, Nanoscale, 4: 5002-5008 (2012).
[11] Low J., Yu J., Ho W., Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel, J. Phys. Chem. Lett., 6: 4244-4251 (2015).
[12] Esrafili M.D., Saeidi N., Nematollahi P., Si-doped Graphene: A Promising Metal-Free Catalyst for Oxidation of SO2 , Chem. Phys. Lett., 649: 37-43 (2016).
[14] Shao Y., Zhang S., Engelhard M.H., Li G., Shao G., Wang Y., Liu J., Aksay I. A., Lin Y., Nitrogen-Doped Graphene and Its Electrochemical Applications, J. Mater. Chem., 20: 7491 (2010).
[14] Zhang L., Xia Z., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells, J. Phys. Chem. C112: 11170-11176 (2011).
[15] قنبرلو، حسنا؛ روشن ضمیر، سوسن؛ محمدجواد پرنیان، مقایسه فعالیت کاتالیست­های دوفلزی Fe-Co/NG و Fe-Co/MWCNT برای واکنش احیای اکسیژن درکاتد پیل­های سوختی، نشریه شیمی و مهندسی شیمی ایران، (2)36: 151 تا 162 (1396).
[16] Su P., Iwase K., Nakanishi S., Hashimoto K., Kamiya K., Nickel‐Nitrogen‐Modified Graphene: an Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide, Small,12: 6083-6089 (2016).
[17] Zhang X., Lu Z., Tang Y., Fu Z., Ma D., Yang Z., A Density Function Theory Study on the NO Reduction on Nitrogen-Doped Graphene, Phys. Chem. Chem. Phys., 16: 20561 (2014).
[18] Xu, X.-Y., Li, J., Xu H., Xu X., Zhao C., DFT Investigation of Ni-doped Graphene: Catalytic Ability to CO Oxidation, New J. Chem. 40: 9361-9369 (2016).
[19] Liu X., Sui Y., Duan T., Meng C., Han Y., Monodisperse Pt Atoms Anchored on N-doped Graphene As Efficient Catalysts for CO Oxidation: a First-Principles Investigation, Catal. Sci. Technol., 5: 1658-1667 (2015).
[20] Zhang X., Lu Z., Yang Z., Single Non-Noble-Metal Cobalt Atom Stabilized by Pyridinic Vacancy Graphene: An Efficient Catalyst for CO Oxidation, J. Mol. Catal. A: Chem., 417: 28-35 (2016).
[22] Delley B., From Molecules to Solids with the DMol3 Approach, J. Chem. Phys., 113: 7756-7764 (2000).
[23] Perdew J.P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77: 3865 (1996).
[26] Hirshfeld F.L., Bonded-Atom Fragments for Describing Molecular Charge Densities, Theor. Chim. Acta, 44: 129-138 (1977).
[28] Stoicheff B.P., High-Resolution Raman Spectroscopy of Gases: IX. Spectra of H2, HD, and D2. Can. J. Phys., 35: 730-741 (1957).
[30] Leung T.C., Chan C.T., Harmon B.N. Ground-State Properties of Fe, Co, Ni, and Their Monoxides: Results of the Generalized Gradient Approximation, Phys. Rev. B, 44: 2923-2930 (1991).
[31] Esrafili M.D., Sharifi F., Dinparast L., Catalytic Hydrogenation of CO2 over Pt-and Ni-doped Graphene: A Comparative DFT Study, J. Mol. Graphics Modell., 77: 143-152 (2017).
[32] Sirijaraensre J., Limtrakul J., Hydrogenation of CO2 to Formic Acid over a Cu-Embedded Graphene: A DFT Study, Appl. Surf. Sci., 364: 241-248(2016).
[33] Vesselli E., Rizzi M., De Rogatis L., Ding X., Baraldi A., Comelli G., Savio L., Vattuone L., Rocca M., Fornasiero P., Hydrogen-Assisted Transformation of CO2 on Nickel: The Role of Formate and Carbon Monoxide, J. Phys. Chem. Lett., 1: 402-406 (2009).
[34] Maihom T., Wannakao S., Boekfa B., Limtrakul J., Production of Formic Acid via Hydrogenation of CO2 over a Copper-Alkoxide-Functionalized MOF: A Mechanistic Study, J. Phys. Chem. C, 117: 17650-17658 (2013).