Kinetic Study of Ring-Forming Reactions Between Nitrile Oxides, Nitrile Sulfides and Triazoles with Simple Cycloalkynes by DFT Method

Document Type : Research Article


1 Department of Chemistry, School of Basic Sciences, Tehran East Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Faculty of Organic Chemistry, Razi University Kermanshah, I.R. IRAN


In this research, the activity and potential energy effect of ring pressure in simple 10-7 membered cycloalkynes in reaction with nitrile oxides, nitrile sulfides and triazoles have been studied by DFT method. Structural properties, thermodynamic and kinetic data such as reaction free energy changes (ΔrG), transition state free energy changes (ΔG*) and reaction rate constants (k) were obtained at 298 K temperature and the effect of substitution groups (R) in dipoles (R- CNO, R-CNS, R-N3) have been investigated on the reaction rate. The results show that by reducing the size of the ring and the bending of the triple bond and as a result of increasing the potential energy of the ring pressure in cycloalkynes, ΔG* of the zygotic ring reaction decreases. Also, the rate constants and free energy changes of the reactions increase with the reduction of the ring size.


Main Subjects

[1] Fringuelli F., Taticchi A., “The Diels–Alder Reaction: Selected Practical Methods”, John Wiley & Sons, Chichester, (2002).
[3] Attanasi O.A., De Crescentini L., Favi G., Filippone P., Mantellini F., Perrulli F.R., Santeusanio S., Cultivating the Passion to Build Heterocycles from 1,2‐Diaza‐1,3‐dienes: the Force of Imagination, Eur. J. Org. Chem., 2009(19): 3109-3127 (2009).
[4] Rai K.M.L., Heterocycl. Chem., 13: 1 (2008).
[5] Garanti L., Molteni G., Tetrahedron Lett, 44: 1133 (2003).
[6]‌ Molteni‌‌‌G‌.‌, Bultero P.D., Tetraheron, 61: 4983 (2005).
[7]‌ Alvarez ‌R.,‌ Velazquez S., San F., De S., Aquaro C., Perno C., Karlsson A., Balzarini J., Camarasa J.M.,‌ J. Med. Chem, 37: 4285 (1994).
[8] Velazques S., Alvarez R., Perez C., Dec F., Gago J., Balzarinj M., Regiospecific Synthesis and Anti-Human Immunodeficiency Virus Activity of Novel 5-Substituted N-Alkylcarbamoyl and N,N-Dialkyl Carbamoyl 1,2,3-Triazole-TSAO Analogues, Antivir chem chemother, 9: 481 (1998).
[9] Genin M., Allwine D.A., Andersn D.J., Barbachyn M.R., Grega K.C., Hester J.B., Huchinson D.K., Morris J., Reicher R.j., Ford C.W., Zurenko G.E., Hamer J.C.,‌ Schaadt ‌R.D., Stapert ‌D., Yagi B.H.,‌ J. Med. Chem, 43: 953 (2000).
[10] Huisgen R., Kinetics and Mechanism of 1,3‐Dipolar Cycloadditions, Angew Chem Int, 2(11): 633–645 (1963).
[11] Huisgen R., 1,3‐Dipolar Cycloadditions. Past and Future, Angew Chem Int, 2(10): 565–598 (1963).
[12] Huisgen R., Scheer W., Huber H., stereospecific Conversion of Cis- Trans Isomeric Aziridios to Open- Chain Azomethine Ylides, Journal of American chemical society, 89: 1753- 1755 (1967).
[13] Taherpour A.A., Kvaskoff D., Bernhardt P.V., Wentrup C., 9‐Azidoacridine and 9‐Acridinylnitrene, J. Phys. Org. Chem., 23: 382–389 (2010).
[15] Taherpour A.A., Rajaeian E., J Mol Struct (Thoechem), 849: 23–24 (2008).
[16] Taherpour A.A., Faraji M., One-Pot Microwave-Assisted Synthesis of 1H-Phenanthro[9,10- d][1,2,3]Triazole, Molbank, 577 (2008).
[17] Taherpour A.A., Shfeei H., Rajaeian E., Ab Initio Studies of Molozonide Formation in 1,3-Dipolar Cycloaddition Reactions between C7-C10 Membered Simple Cycloalkynes and O3, Orient. J.  Chem., 27(3): 885–893 (2011).
[18] Rajaeian E., Tahepour A.A., Kinetic Study of Reaction between Allyl Compounds of Mg and Ethylene: Computational Investigation, Iran. Chem. Chem. Eng. 36(2): 7-12 (2017).
[19] Carey F.A., Organic Chemistry., McGraw-Hill, Higher Education, J. March. Org. Chem., (2003).
[20] Frisch M.J., et al,‌ Gaussian 09, A.01. Gaussian Inc., Wallingford CT, (2009)
[21] McQuarrie D.A., Simon J.D., “Physical Chemistry: A Molecular Approach”, University Science Books, Sausalito, (1999).