Salty Water Desalination Modeling Using Electrodialysis Process and Neural Network Technique

Document Type : Research Article


The School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST),, Tehran, I.R. IRAN


In this study, a model is presented using the black box neural network technique. In this model, the effects of four basic parameters, including temperature, voltage consumption, flow rate, and feed concentration on salt separation percentage from salty water, have been investigated. With the help of trial and error, the training method, transfer function, and the optimal number of neurons on each layer are selected to provide the best network performance. Multi-layer neural network, backpropagation, and Levenberg-Marquardt algorithm are utilized as the optimum options. In this study, 135 data were used, allocating 60% of them (81 data) to network training, 20% (27 data) to training data evaluation, and the remaining 20% (27 data) to assess the network generalizability as test data. Finally, a comparison of the model results with independent laboratory data indicates that the optimal network arrangement is 4:5:8:1, and the model with an error of less than 1% can predict the process behavior.


Main Subjects

[1] Koter S., Warszawski A., Electromembrane Processes in Environment Protection, Polish Journal of Environmental Science, 9(1): 45-56 (2000).
[2] Rype J., Jonsson G., "Modelling of Electrically Driven Membrane Processes", Ph.D. Thesis, Technical University of Denmark (2003).
[3] Xu T., Huang C., Electrodialysis‐Based Separation Technologies: A Critical Review, AIChE Journal, 54(12): 3147-3159 (2008).
[4] گوهری، فاطمه؛ شاهسوند، اکبر؛ بررسی عملکرد شبکه عصبی مصنوعی  MLP، RBF و ORN در یک کانال افقی همراه با انتقال جرم و انتقال حرارت همزمان، نشریه شیمی و مهندسی شیمی ایران، (2)35: 168-151 (1395).
[5] Sha W., Edwards K., The Use of Artificial Neural Networks in Materials Science-Based Research, Material Design, 28(6): 1747-1752 (2007).
[6] Mjalli F., Al-Asheh S., Alfadala H., Use of Artificial Neural Network Black-Box Modeling 
for the Prediction of Wastewater Treatment Plants Performance, Journal of Environmental Management, 83(3): 329-338 (2007).
[7] Tanaka Y., Mass Transport and Energy Consumption in Ion-Exchange Membrane Electrodialysis of Seawater, Journal of Membrane Science, 215(1-2): 265-279 (2003). 
[8] Kabay N., Arda M., Kurucaovali I., Ersoz E., Kahveci H., Can M., Dal S., Kopuzlu S., Haner M., Demircioglu M., Effect of Seed Characteristics on the Separation Performances of Monovalent and Divalent Salts by Electrodialysis, Desalination, 158(1-3): 95-100 (2003).
[9] Ortiz J., Sotoca J., Exposito, E., Gallud F., Garcia-Garcia V., Montiel V., Aldaz, A., Brackish Water Desalination by Electrodialysis: Batch Recirculation Operation Modeling, Journal of Membrane Science, 252(1-2): 65-75 (2005).
[10] Lee H., Sarfert F., Strathmann H., Moon S., Designing of an Electrodialysis Desalination Plant, Desalination, 142(3): 267-286 (2002).
[11] نوغانی، سمیه؛ امیری، محمد؛ امامی، محمدامین؛ ارزیابی عملکرد شاخص هدایت الکتریکی در پایش فرایند نمک زدایی سفالینه های تاریخی، نشریه شیمی و مهندسی شیمی ایران، (4)35: 159-151 (1395).
[12] Sadrzadeh M., Mohammadi T., Ivakpour J.,  Kasiri N., Separation of Lead Ions from Wastewater Using Electrodialysis: Comparing Mathematical and Neural Network Modeling, Chemical Engineering Journal, 144(3): 431-441 (2008).
[13] Sadrzadeh M., Kaviani A., Mohammadi T., Mathematical Modeling of Desalination by Electrodialysis, Desalination, 206(1-3): 538-546 (2007).
[14] Delgrange N., Cabassud C., Cabassud M., Durand-Bourlier L., Laine J., Neural Networks for Prediction of Ultrafiltration Transmembrane Pressure–Application to Drinking Water Production, Journal of Membrane Science, 150(1): 111-123 (1998).
[15] Al-Shayji K. Khawla A., "Modeling, Simulation, and Optimization of Large-Scale Commercial Desalination Plants", Virginia Tech, (1998).
[16] Sadrzadeh M. Mohammadi T., Sea Water Desalination Using Electrodialysis, Desalination, 221(1-3): 440-447 (2008).
[17] ذوقی، محمدجواد؛ گنجی دوست، حسین؛ مختارانی، نادر؛ آیتی، بیتا؛ بهینه سازی فرایند تثبیت و جامدسازی سیمانی لجن صنایع آبکاری توسط شبکه عصبی مصنوعی و روش سطح پاس، نشریه شیمی و مهندسی شیمی ایران، (2)34: 97 تا 109 (1394).
[18] He X., Xu S., "Process Neural Networks: Theory and Applications". Springer Science & Business Media (2010).
[19] Engelbrecht A., "Computational Intelligence: An Introduction". John Wiley & Sons Inc. (2007).