A Sensitive, Simple, and Direct Determination of β-Blocker Carvedilol Drug at Trace Level in Biological Samples by Using Tb(III)-1,10-Phenanthroline-Silver Nanoparticles Luminescent Nanosensor Probe

Document Type : Research Article


1 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

2 Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, I.R. IRAN


A new, sensitive, simple, and rapid fluorometric method was developed for the direct determination of carvedilol in real samples. The method was based on the inhibition of the fluorescence resonance energy transfer (FRET) process between terbium (III)-1, 10-phenanthroline (Tb-phen) complex, and silver nanoparticles (AgNPs). For this purpose, the quenching effect of AgNPs in the concentration range of 0.9×10-12 – 5.4 ×10-11 M was investigated on the Tb-phen complex fluorescence intensity in the excitation and emission wavelengths of 300 and 500 nm, respectively. The results showed that the amount of AgNPs quenching, as a result of FRET process, is very high and there is a good linear relationship between the quenched fluorescence intensity and AgNPs concentration. The quenching probably occurs when the Tb-phen complex is attached to the AgNPs by electrostatic force and long-range dipole-dipole interaction between the excited donor (Tb-phen complex) and ground-state acceptor molecules (AgNPs). Upon the addition of carvedilol, the quenched fluorescence of Tb-phen complex was gradually recovered by carvedilol via its strong adsorption on the surface of AgNPs and removal of Tb-phen complex from the AgNPs surface (turn off/on process). Under the optimum conditions, a linear relationship was obtained between the enhanced fluorescence intensity and the carvedilol concentration in the range of (5-1000)×10-8 M with the detection limit of 2.0×10-8 M. The proposed method was successfully applied to determine carvedilol in the spiked normal serum samples and analytical recoveries from treated serum samples were in the range of 92.5–103% and relative standard deviation (RSD%) were 0.14-1.15.


Main Subjects

[1] Dantas E.M., Pimentel E.B., Andreão R.V., Cichoni B.S., Gonçalves C.P.,  dos Zaniqueli D.A., Baldo M.P., Rodrigues S.L., Mill J.G., Carvedilol Recovers Normal Blood Pressure Variability in Rats with Myocardial Infarction, Auton. Neurosci. 177(2):  231-236 (2013).
[2] Kokkinos P., Chrysohoou C., Panagiotakos D., Narayan P., Greenberg M., Singh S., Beta-Blockade Mitigates Exercise Blood Pressure in Hypertensive Male Patients, J. Am. Coll. Cardiol., 47(4): 794-798 (2006).  
[4] Palazzuoli, A., Calabria, P., Verzuri, M., Auteri, A., Carvedilol: Something Else Than a Simple Betablocker? Eur. Rev. Med. Pharmacol. Sci., 6:115-126 (2002).
[5] Wang, M., Bai, J., Chen, W.N., Ching, C.B, Metabolomic Profiling of Cellular Responses
to Carvedilol Enantiomers in Vascular Smooth Muscle Cel
l, PloS One, 5(11): e15441 (2010).
[8] Yamsani V.V., Gannu R., Yamsani M.R., Veerabrahma, K., High-Performance Liquid Chromatography Determination of Carvedilol in Pig Serum, J. Chromatogr. Sci. 48 (5): 348-352 (2010).
[9] Ptacek P., Macek J., Klima J., Liquid Chromatographic Determination of Carvedilol in Human Plasma, J. Chromatogr. B, 789(2): 405–410 (2003).
[13] Jeong D.W., Kim, H.Y., Ji, H.Y.; Youn, Y.S., Lee, K.C., Lee H.S., Analysis of Carvedilol
in Human Plasma Using Hydrophilic Interaction Liquid Chromatography with Tandem Mass Spectrometry
, J. Pharm. Biomed. Anal., 44(2): 547-522 (2007).
[14] Pires C.K., Marques, K.L., Santos J.L., Lapa R.A., Lima J.L., Zagatto E.Z., Chemiluminometric Determination of Carvedilol in a Multi-Pumping Flow System, Talanta 68(2): 239–244 (2005).
[16] Xiao Y., Wang H.Y., Han J., Simultaneous Determination of Carvedilol and Ampicillin Sodium by Synchronous Fluorimetry, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61(4): 567–573 (2005).
[17] Silva R.A., Wang C.C., Fernandez L.P., Masi A.N., Flow Injection Spectrofluorimetric Determination of Carvedilol Mediated by MicellesTalanta 76(1): 166–171 (2008).
[19] Xu L.X., Hui N., Ma L.Y., Wang H.U., Study on Fluorescence Property of Carvedilol and Determination of Carvedilol by Fluorimetry, Spectrochim. Acta A, 61(5): 855–859 (2005).
[22] Gagyi L., Gyeresi A., Kilar F., Role of Chemical Structure in Stereo Selective Recognition of Beta-Blockers by Cyclodextrins in Capillary Zone Electrophoresis, J. Biochem. Biophys. Methods, 7(4): 1268-1275 (2007).  
[23] Lakowicz J.R., "Principles of Fluorescence Spectroscopy", Third ed. Kluwer/Plenum, New York, (2006).
[24] Shaghaghi M., Dehghan G., Jouyban A., Sistani P., Arvin M., Studies of Interaction Between Terbium (III)-Deferasirox and Double Helix DNA by Spectral and Electrochemical Methods, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 120: 467–472 (2014).
[25] Xu H., Yao N., Xu H., Wang T., Li G., Li Z., Characterization of the Interaction between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods, Int. J. Mol. Sci., 14: 14185-14203 (2013).
[26] Valeur B., Brochon C., “Trends in Fluorescence spectroscopy: Application to Chemical and Life Sciences”, (Eds), Springer-Verlag, Berlin, 2-6 (2001).  
[28] Dehghan G., Dolatabadi J.E.N., Jouyban A., Zeynali K.A., Ahmadi S.M., Kashanian S., Spectroscopic Studies on the Interaction of Quercetin-Terbium(III) Complex with Calf Thymus DNA, DNA Cell. Biol. 30(3): 195–201(2011).
[30] Zhang G.W., Guo J.B., Zhao N., Wang J., Study of Interaction between Kaempferol–Eu3+ Complex and DNA with the Use of the Neutral Red Dye as a Fluorescence Probe, Sensor. Actuat. B Chem. 144(1): 239–246 (2010).
[31] Dehghan G., Shaghaghi M., Sattari S., Jouyban A., Interaction of Human Serum Albumin with Fe(III)–Deferasirox Studied by Multispectroscopic Methods, J. Lumin. 149: 251-257 (2014).
[32] Safarnejad A., Shaghaghi M., Dehghan G., Soltani S., Binding of Carvedilol to Serum Albumins Investigated by Multi-Spectroscopic and Molecular Modeling Methods, J. Lumin. 176: 149–158 (2016).
[33] Selvin P.R., The Renaissance of Fluorescence Resonance Energy Transfer, Nat. Struct. Biol. 7(9): 730-734 (2000).
[35] Saini S., Srinivas G., Bagchi B., Distance and Orientation Dependence of Excitation Energy Transfer: from Molecular Systems to Metal Nanoparticles, J. Phys. Chem. B, 113(7): 1817-1832 (2009).
[36] Rogach A.L., Klar T.A., Lupton J.M., Meijerink A., Feldmann J., Energy Transfer with Semiconductor Nanocrystals, J. Mater. Chem. 19(9): 1208-1221 (2009).
[37] Yi Y., Deng J., Zhang Y., Li H., Yao S., Label-free Si Quantum Dots as Photoluminescence Probes for Glucose Detection, Chem. Commun. 49(6): 612-614 (2013).
[38] Guzmn M.G., Dille J, Godet S., Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity, Int. J. Mat. Metall. Eng. 2(7): 91-98 (2008).
[39] Kholoud M.M., El-Nour A., Eftaiha A., Al-Warthan A., Ammar R.A.A., Synthesis and Applications of Silver Nanoparticles, Arab. J. Chem. 3(3): 135–140 (2010).
[42] Song Y., Li Y., Liu Z., Liu L., Wang X., Su X., Ma Q., A novel Ultrasensitive Carboxymethyl Chitosan-Quantum Dot-Based Fluorescence “Turn On-Off” Nanosensor for Lysozyme Detection, Biosens. Bioelectron. 61: 9–13 (2014).
[43] Sanaeifar N., Rabiee M., Abdolrahim M., Tahriri M., Vashaee D., Tayeb L., A Novel Electrochemical Biosensor Based on Fe3O4 Nanoparticles-Polyvinyl Alcohol Composite for Sensitive Detection Of Glucose, Anal. Biochem. 519: 19-26 (2017).  
[44] کریم­زاده، فتح الله؛ قاسمعلی، احسان؛ سالمی­زاده، سامان؛ نانومواد: خواص، تولید و کاربرد، انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان، (1391).
[45] Wang G.L., Hu X.L., Wu X.M., Li Z.H., Quantum Dots-Based Glucose Sensing Through Fluorescence Quenching by Bienzyme-Catalyzed Chromogenic Substrate Oxidation, Sensor. Actuat. B: Chem. 205: 61–66 (2014).
[46] سمرقندی، محمدرضا؛ حذف فتوکاتالیستی کادمیوم با استفاده از نانوذره­های روی اکسید، نشریه شیمی و مهندسی شیمی ایران، (1)35: 1 تا 11 (1395).
[47] مظفری، شهلا؛ اردوخانیان، ژولیت؛ عجمی، نرگس؛ بابایی، زینب؛ سنتز نانوکامپوزیت روی اکسید و منگنز دی اکسید و کاربرد آن در اندازه­گیری فلزات سنگین در آب، نشریه شیمی و مهندسی شیمی ایران، (3)38 : 47 تا 55 (1398).
[48] سعادتی، ا ؛ شادجو، ن.؛ حسن­زاده م.ح.؛ کاربرد نانومواد پیشرفته در توسعه فناوری زیست حسگرهای آنزیمی، نشریه شیمی و مهندسی شیمی ایران، (1)38: 309 تا 327 (1398).
[50] Manikandan P., Pushpam S., Sasirekha V., Suvetha Rani J., Ramakrishnan V., The Quenching Effect of Silver Nanoparticles on 2-amino-3-bromo-1, 4-naphthoquinone Using Fluorescence Spectroscopy, Spectrochim. Acta A, 121: 276–281 (2014).
[51] Queiroz A.M., Mezacasa A.V., Graciano D.E., Falco W.F., M’Peko J.-C., Guimarães F.E.G., Lowson T., Colbeck I., Oliveira S.L., Caires A.R.L., Quenching of Chlorophyll Fluorescence Induced by Silver Nanoparticles, Spectrochim. Acta A, 168: 73-77 (2016).