Investigation of the Sodium Dodecyl Sulfate Anionic Surfactant Effect on Interfacial Tension of Decane and Water as Experimentally and Molecular Simulation

Document Type : Research Article

Authors

1 Department of Physical Chemistry, Science and Research Branch, Islamic Azad University, Ahvaz, I.R. IRAN

2 Department of Chemical Engineering, Ilam University, Ilam, I.R. IRAN

Abstract

In this study, the effect of anionic sodium dodecyl sulfate surfactant on the InterFacial Tension (IFT) of water and oil that is important in the Enhanced Oil Recovery (EOR) was studied using an experimental method and molecular dynamics simulation. For this purpose, the interfacial tension between the water solution and droplet decane was investigated in two conditions. In the first case, the solution consists of pure water molecules and chimneys, and in the second case, sodium dodecyl sulfate surfactant was added to the solution. In the SDS1 system, interfacial tension decreased from 54.83 mN /m to 7.32 mN /m and in the SDS2 system, the interfacial tension of 59.06 mN /m decreased by 8.28 mN /m. The results showed that the addition of anionic sodium dodecyl sulfate surfactant reduces interfacial tension in the second case. On the other hand, the number of molecules was evaluated and the molecular ratio was affected in the process of decreasing surface tension. The larger the number of water molecules and decane, the greater the ability to reduce the interfacial tension. According to the results, the higher  the number of surfactant molecules with respect to water and alkanes, the more interfacial tension reduction is observed. Also, molecular simulations were performed to investigate the effect of surfactant concentration on interfacial tension at constant water and alkane (16 surfactant molecules, 120 molecules of dihydrates, and 800 molecules of water) (SDS3). The results showed that the interfacial tension decreased to 12.66 mN / m which has a lower performance than the SDS1 mode.

Keywords

Main Subjects


[1] Thomas S., Enhanced Oil Recovery - An Overview. Oil & Gas Science and Technology - Review. IFP, 63(1): 9-19 (2008).
[2] قجاوند، حسین؛ نور محمد،علیرضا؛ ازدیاد برداشت نفت از سنگ‌های کربناته به وسیله آشام خود به خودی محلول­های ماده فعال سطحی، نشریه شیمی و مهندسی شیمی ایران، (3)32: 69 تا 78 (1392).
[3] احصایی، ژاله؛ نبی پور، معین، ازدیاد برداشت نفت با به کارگیری ماده فعال سطحی، به منظور کاهش کشش بین سطحی و بهبود ترشوندگی میدان نفتی کرنج، پنجمین کنفرانس بین المللی نوآوری‌های اخیر در شیمی و مهندسی شیمی، تهران، دانشگاه علامه طباطبایی (۱۳۹۶).
[4] حیدری, پوریا؛ وفایی سفتی، محسن؛ تنگستانی، ابراهیم و کاظمی، حامد، تزریق همزمان شوراب رقیق به همراه ماده فعال سطحی به منظور ازدیاد برداشت، چهارمین همایش علمی مخازن هیدروکربوری و صنایع بالادستی علوم و صنایع وابسته، تهران، شرکت هم اندیشان انرژی کیمیا (۱۳۹۴).
[5] چشم گرم, هدایت و اسفندیاری، نادیا، مطالعه ی آزمایشگاهی تأثیر آلکالاین بر فرآیند سیلابزنی ماده فعال سطحی جهت ازدیاد برداشت از مخزن نفتی آسماری، دومین کنفرانس سراسری تحقیقات جدید در شیمی، مهندسی شیمی و نفت، شیراز (۱۳۹۵).
[6] Xu J., Zhang Y., Chen H., Wang P., Xie Z., Yao Y., Yan Y., Zhang J., Effect of surfactant Headgroups on the Oil/Water Interface: An Interfacial Tension Measurement and Simulation Study, Journal of Molecular Structure, 1052: 50-56 (2013).
[7] Shi P., Zhang H., Lin L., Song Ch., Chen Q., Li Z., Molecular Dynamics Simulation of Four Typical Surfactants at Oil/Water Interface, Journal of Dispersion Science and Technology, 39(9): 1258-1265. (2018).
[8] Jang S.S., et al., Molecular Dynamics Study of a Surfactant-Mediated Decane− Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate, The Journal of Physical Chemistry B, 108(32): 12130-12140. (2004).
[9] Dominguez H., Computer Simulation Studies of Surfactant Monolayer Mixtures at the Water/Oil Interface: Charge Distribution Effects, Journal of Colloid and Interface Science, 274(2): 665-672 (2004).
[10] Tirjoo A., Bayati B., Rezaei H., Rahmati M., Molecular Dynamics Simulation of the Effect of Ions in Water on the Asphaltene Aggregation, Journal of Molecular Liquids, 277: 40-48 (2019).
[11] Tirjoo A., Bayati B., Rezaei H., Rahmati M., Molecular Dynamics Simulations of Asphaltene Aggregation under Different Conditions, Journal of Petroleum Science and Engineering, 177: 392-402 (2019).
[12] Rezaei H., Modarress H., Dissipative Particle Dynamics (DPD) Study of Hydrocarbon–Water Interfacial Tension (IFT), Chemical Physics Letters, 620: 114-122 (2015).
[13] Green D.W., Willhite G.P., “Enhanced Oil Recovery”, SPE Text-Book Series Vol 6. Society of Petroleum Engineers, Richardson Texas. (1998).
[14] Buuren van A.R., Berendesn  H.J.C., Molecular Dynamics Simulations of Carbohydrate-Based Surfactants in Surfactant/Water/Oil Systems, Langmuir, 10: 1703-1713 (1994).
[15] Berendesn H.J.C., Postma J.P.M., Gunsteren van W.F., DiNola A., Haak J.R., Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 81: 3684-3690 (1984).
[16] Gunsteren W.F. van., Berendesn H.J.C., “GROMACS User Guide (1986).
[17] Zeppieri S., Rodriguez J., Ramos de A.L., Interfacial Tension of Alkane + Water Systems, J. Chem. Eng. Data, 46:  1086-1088 (2001).
[18] Rosen J.M., Kunjappu J.T., “Surfactants and Interfacial Phenomena”, John Wiley & Sons, Inc. Hoboken, New Jersey, pp.93. (2004).
[19] Jang S.S., Lin S.T., Maiti  P.K., Blanco M., Goddard W.A., Shuler P., Tang Y., Molecular Dynamics Study of a Surfactant-Mediated Decane−Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate, J. Phys. Chem. B, 108: 12130-12140 (2004).
[21] Rivera J.L., Predota M., Chialvo A.A., Cummings P.T., Vapor-Liquid Equilibrium Simulations of the SCPDP Model of Water, Chem. Phys. Lett., 357: 189-194 (2002).