Theoretical Study on the Structural and Optoelectronic Properties of Mix Diimine-Dithiolate Complexes with the Group VIII Metals for Application in DSSCs

Document Type : Research Article


Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, I.R. IRAN


In this research, the structural, electronic and optical properties of mix diimine-dithiolate complexes with general formula [M(diimine)(dithiolate)] (M = Ni, Pd, Pt; diimine = phenanthroline)phen(;dithioalt = 1,2-benzenedithiolate) bdt), maleonitriledithiolate (mnt)) are reported through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Natural Bond Orbital (NBO) analyses are also performed for scrutinizing the structural properties of the considered complexes. The results show that the M–S bond has a stronger covalent character than the M–N bond and is always polarized towards the sulfur atom. The absorption spectra of these complexes were obtained by using the time-dependent density functional theory associated with the polarized continuum model (PCM). Obtained results indicate that the substitution of bdt ligand and Pt metal enhances the intensity of the absorption significantly and the overall absorption spectrum can be red-shifted. Moreover, the latter complex [Pt(phen)(bdt)] has the highest light-harvesting efficiency (LHE). Overall, this study can widen for diimine- dithiolate complexes with a suitable combination of metal ions and ligands to be explored as dye-sensitized solar cells.


Main Subjects

[1] Jensen F., "Introduction to Computational Chemistry", John Wiley & Sons Ltd, 3th ed, (2016).
[2] Geerlings P., Deproft F., Langenaeker W., Conceptual Density Functional Theory, Journal of Chemical Reviews, 103: 1793-1874 (2003).
[3] Linfoot L.C., Richardson P., McCall K.L., Durrant J.R., Morandeira A., Robertson N., A Nickel-Complex Sensitiser for Dye-Sensitised Solar Cells, Solar Energy, 85: 1195-1203 (2011).
[4] Mitsopoulou C.A., Identifying of Charge-Transfer Transitions and Reactive Centers in M(diimine)(dithiolate) Complexes by DFT Techniques, Coordination Chemistry Reviews, 254: 1448-1453 (2010).
[5] Zheng B., Sabatini R.P., Fu W.F., Eum M.S., Brennessel W.W., Wang L., McCamant D.W., Eisenberg R., “Light-Driven Generation of Hydrogen: New Chromophore Dyads for Increased Activity Based on Bodipy Dye and Pt (diimine)(dithiolate) Complexes”, Proceedings of the National Academy of Sciences of the United States of America, 112: E3987- E3996 (2015).
[6] Vieira B.J.C., Dias J.C., Santos I.C., Pereira L.C.J., Gama V., Waerenborgh J.C., Thermal Hysteresis in a Spin-Crossover FeIII Quinolylsalicylaldimine Complex, FeIII(5-Br-qsal)2Ni(dmit)2·solv: Solvent Effects, Inorganic Chemistry, 54(4): 1354-1362 (2015).
[8] Becke A.D., Density‐Functional Thermochemistry. III. The role of Exact Exchange, The Journal of Chemical Physics, 98: 5648-5652 (1993).
[9] Raghavachari K., Binkley J. S., Seeger R., Pople J.A., Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions, The Journal of Chemical Physics, 72(1): 650-654 (1980).
[10] Hay P.J., Wadt W.R., Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg, The Journal of Chemical Physics, 82: 270–283 (1985).
[11] Tomasi J., Mennucci B., Cammi R., Quantum Mechanical Continuum Solvation Models, Chemical Reviews, 105: 2999-3094 (2005).
[12] Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09 Inc., Pittsburgh, (2009).
[13] Cocker T.M., Bachman R.E., Photochemical and Chemical Oxidation of α-Dimine−Dithiolene Metal Complexes: Insight into the Role of the Metal Atom, Inorganic Chemistry, 40(7): 1550-1556 (2001).
[14] Y. Zhang, K.D. Ley, K.S. Schanze, Photooxidation of Diimine Dithiolate Platinium(II) Complexes Induced by Charge Transfer to Diimine Excitation, Inorganic Chemistry, 35(24): 7102-7110 (1996).
[15] Connick W.B., Gray H.B., Photooxidation of Platinum (II) Diimine Dithiolates, Journal of the American Chemical Society, 119(48): 11620-11627 (1997).
[16] Koseoglu A., Kraka E., Serindag O., Varnali T., Comparison of Ni, Pd, Pt Complexes of
: A DFT Study, Journal of Molecular Structure, 896: 49-57 (2009).
[17] Zhou H., Zhang Y., Zhua D., DFT Studies on Some Properties of Maleonitriledithiolate Complexes [M(mnt)2]2− (M = Ni, Pd, Pt and Zn, Cd, Hg), Spectrochimica Acta Part A, 86: 20-26 (2012).
[18] Radovic L.R., Bockrath B., On the Chemical Nature of Graphene Edges: Origin of Stability and Potential for Magnetism in Carbon Materials, Journal of the American Chemical Society, 127(16): 5917-5927 (2005).
[19] Parr R.G., Szentpály L., Liu S., Electrophilicity Index, Journal of the American Chemical Society, 121: 1922-1924)1999(.
[20] Scott D., Cummings S.D., Eisenberg R., Tuning the Excited-State Properties of Platinum(II) Diimine Dithiolate Complexes, Journal of the American Chemical Society, 118(45): 1949-1960 (1996).
[21] Cameron L.A., Ziller J.W., Heyduk A.F., Near-IR Absorbing Donor-Acceptor Ligand-To-Ligand Charge-Transfer Complexes of Nickel(II), Chemical Science, 3: 1807-1814 (2016).
[22] Deplano P., Espa D., Mercuri M.L., Pilia L., Serpe A., Square-Planar d8 Metal Mixed-Ligand Dithiolene Complexes as Second-Order Nonlinear Optical Chromophores: Structure/Property Relationship, Coordination Chemistry Reviews, 254: 1434-1439 (2010).
[23] Chen C.Y., Wang M.K., Li J.Y., Pootrakulchote N., Alibabaei L., Ngocle C.H., Decoppet J.D., Tsai J.H., Gratzel C., Wu C.G., Zakeeruddin S.M., Gratzel M., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, ACS Nano, 3(10): 3103-3109 (2009).
[24] Pintus A., Aragoni M.C., Coles S.J., Isaia F., Lippolis V., Musteti A.-D., Teixidor F., Viñasc C., Arca M., New Pt II Diimine–Dithiolate Complexes Containing a 1,2-Dithiolate-1,2-Closo-Dicarbadodecarborane: An Experimental and Theoretical Investigation, Dalton Transactions, 43: 13649-13660 (2014).
[25] Kumar A., Auvinen S., Trivedi M., Chauhan R., Alatalo M., Synthesis, Characterization and Light Harvesting Properties of Nickel(II) Diimine Dithiolate Complexes, Spectrochimica Acta Part A, 115: 106-110 (2013).
[26] Li G., Mark M.F., Lv H., McCamant D.W., Eisenberg R., Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen, Journal of the American Chemical Society, 140(7): 2575-2586 (2018).
[27] Ho P.Y., Zheng B., Mark D., Wong W.Y., McCamant D.W., Eisenberg R., Chromophoric Dyads for the Light-Driven Generation of Hydrogen: Investigation of Factors in the Design of Multicomponent Photosensitizers for Proton Reduction, Inorganic Chemistry, 55(17): 8348-8358 (2016).
[29] Lu X., Shao Y., Wei S., Zhao Z., Li K., Guo C., Wang W., Zhang M., Guo W., Effect of the Functionalized Π-Bridge on Porphyrin Sensitizers for Dye-Sensitized Solar Cells: An In-Depth Analysis of Electronic Structure, Spectrum, Excitation, and Intramolecular Electron Transfer, Journal of Materials Chemistry C, 3: 10129-10139 (2015).