Synthesis, Characterization, and Antiproliferative Study of Some Complexes Containing Pyridine-N-oxide-2,6-dicarboxylic Acid

Document Type : Research Article


1 Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN

2 Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, I.R. IRAN

3 Department of Chemistry, Faculty of Sciences, Mashhad Ferdowsi University, Mashhad, I.R. IRAN

4 School of Physics, Damghan University (DU), Damghan, I.R. IRAN


In this paper we report the synthesis and characterization of three new mixed-ligand cobalt and manganese complexes containing H2pydco = pyridine-N-oxide-2,6-dicarboxylic acid,  bipy = 2,2ꞌ˗bipyridine and phen = 1,10˗phenanthroline. The proposed formula and structures of these compounds have been determined by elemental analysis, infrared spectroscopy, Thermal gravimetric analysis (TGA-DTA), and melting point. A search of the Cambridge Structural Database (CSD version 5.38 updates May 2017) returned 2017 complexes with pyridine-2,6-dicarboxylic acid and 49 complexes with pyridine-N-oxide-2,6-dicarboxylic acid ligands. It can be emphasized that the lack of similar and suitable complexes containing N˗oxidized H2pydco ligand in the articles of any comparison in this family has been confronted. In addition, the cytotoxicity of these three complexes was used to evaluate their antiproliferative activity on HeLa cells (human ovarian carcinoma), MCF-7 (human breast cancer), HT-29 (human colon cancer), K-562 (human myeloid cell cancer), Neuro-2a (mouse murine neuroblastoma), and L929 (rat cell fibroblast cell line, normal cell) were evaluated by MTT assay and compared with cisplatin as a reference. The results showed more cytotoxicity for complexes 2 and 3 against MCF-7 and HT-29 cell lines compared to cisplatin.


Main Subjects

[1] Kitagawa S., Matsuda R., Chemistry of Coordination Space of Porous Coordination Polymers, Coord. Chem. Rev., 251: 2490-2509 (2007).
[2] Ma Z.B., Moulton B., Recent Advances of Discrete Coordination Complexes and Coordination Polymers in Drug Delivery, Coord. Chem. Rev., 255: 1623-1641 (2011).
[4] Fang S.M., Hu M., Jia L.R., Wang C., Zhang Q., Ma S.T., Du M., Liu C.S., Highly-Thermostable Lanthanide–Organic Coordination Frameworks with N-Protonated 2,6-Dihydroxypyridine-4-Carboxylate Exhibiting Unusual 3-D Mixed-Connected Network Topology, Cryst. Eng. Comm., 13: 6555-6563 (2011).
[5] Kondo M., Okubo T., Asami A., Noro S.I., Yoshitomi T., Kitagawa S., Ishii T., Matsuzaka H., Seki K., Rational Synthesis of Stable Channel‐Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine‐2,3‐dicarboxylate; L=a Pillar Ligand), Angew. Chem. Int. Ed., 38: 140-143 (1999).
[6] Cao T., Peng Y., Liu T., Wang S., Dou J., Li Y., Zhou C., Li D., Bai J., Assembly of a Series of D10 Coordination Polymers of Pamoic Acid Through a Mixed-Ligand Synthetic Strategy: Syntheses, Structures And Fluorescence Properties, Cryst. Eng. Comm., 16: 10658-10673 (2014).
[8] Shahbazi M., Mehrzad F., Mirzaei M., Eshtiagh-Hosseini H., Mague J.T., Ardalani M., Shamsipur M., Synthesis, Single Crystal X-Ray Characterization, and Solution Studies of Zn(II)-, Cu(II)-, Ag(I) - and Ni(II)-pyridine-2,6-dipicolinate N-Oxide Complexes with Different Topologies and Coordination Modes, Inorg. Chim. Acta, 458: 84-96 (2017).
[9] Bazargan M., Mirzaei M., Eshtiagh-Hosseini H., Mague J.T., Bauzá A., Frontera A., Synthesis, X-ray Characterization and DFT study of a novel Fe(III)–Pyridine-2,6-Dicarboxylic Acid N-oxide Complex with Unusual Coordination Mode, Inorg. Chim. Acta, 449: 44-51 (2016).
[10] Mirzaei M., Eshtiagh-Hosseini H., Bazargan M., Mehrzad F., Shahbazi M., Mague J.T., Bauzá A., Frontera A., Two New Copper and Nickel Complexes of Pyridine-2,6-Dicarboxylic Acid N-Oxide and Their Proton Transferred Salts: Solid State and DFT Insights, Inorg. Chim. Acta, 438: 135-145 (2015).
[11] solutions/ csd-system/ components/ conquest/
[12] Hassanpoor A., Mirzaei M., Niknam Shahrak M., Majcher A.M., Developing a Magnetic Metal-Organic Framework of Copper Bearing a Mixed Azido/Butane-1,4-Dicarboxylate Bridge: Magnetic and Gas Adsorption Properties, Dalton Trans., 47: 13849-13860 (2018).
[13] Xiong Y., Fan Y.Z., Yang R., Chen S., Pan M., Jiang J.J., Su C.Y., Amide and N-oxide Functionalization of T-Shaped Ligands for Isoreticular MOFs with Giant Enhancements in CO2 Separation, Chem. Commun., 50:14631-14634 (2014).
[14] Liu B., Zhou H.F., Hou L., Wang Y.Y., Functionalization of MOFs via a Mixed-Ligand Strategy: Enhanced CO2 Uptake by Pore Surface Modification, Dalton Trans., 47: 5298-5303 (2018).
[15] Liao P.Q., Chen X.W., Liu S.Y., Li X.Y., Xu Y.T., Tang M., Rui Z., Ji H., Zhang J.P., Chen X.M., Putting an Ultrahigh Concentration of Amine Groups into a Metal-Organic Framework for CO2 Capture at Low Pressures, Chem. Sci., 7: 6528-6533 (2016).
[16] De Sa G.F., Malta O.L., de Mello Donega C., Simas A.M., Longo R.L., Santa-Cruz P.A., da Silva Jr E.F., Spectroscopic Properties and Design of Highly Luminescent Lanthanide Coordination Complexes, Coord. Chem. Rev., 196: 165-195 (2000).
[17] Lis S., Hnatejko Z., Barczynski P., Elbanowski M., Luminescence Studies of Eu(III) Mixed Ligand Complexes, J. Alloys Comp., 344: 70-74 (2002).
[18] Takimoto C.H., Calvo E., “Principles of Oncologic Pharmacotherapy” in Pazdur R., Wagman L.D., Camphausen K.A., Hoskins W.J., (Eds) “Cancer Management: A Multidisciplinary Approach”, 11th ed., (2008).
[19] Meshkini A., Yazdanparast R., Chemosensitization of Human Leukemia K562 Cells to Taxol by a Vanadium-Salen Complex, Exp. Mol. Pathol., 89: 334-342 (2010).
[20] Jungwirth U., Kowol C.R., Keppler B.K., Hartinger C.G., Berger W., Heffeter P., Anticancer Activity of Metal Complexes: Involvement of Redox Processes, Antioxid. Redox. Signaling., 15(4): 1085–1127 (2011).
[21] Pennella M.A., Shokes J.E., Cosper N.J., Scott R.A., Giedroc D.P., Structural Elements of Metal Selectivity in Metal Sensor Proteins, Proc. Natl. Acad. Sci. U. S. A, 100: 3713–3718 (2003).
[22] Takeuchi, T., Böttcher, A., Quezada, C.M., Meade, T.J., Gray, H.B., Inhibition of Thermolysin and Human Α-Thrombin by Cobalt(III) Schiff Base Complexes, Bioorg. Med. Chem., 7(5): 815-819 (1999).
[23] Burger R.M., Cleavage of Nucleic Acids by Bleomycin, Chem. Rev., 98: 1153–1169 (1998).
[24] Ji L.-N., Zou X.-H., Liu J.-G., Shape- and Enantioselective Interaction of Ru(II)/Co(III) Polypyridyl Complexes with DNA, Coord. Chem. Rev., 216: 513-536 (2001).
[26] Ellis B.L., Sharma H.L., Co, Fe and Ga Chelates for Cell Labelling: A Potential Use in PET Imaging, Nucl. Med. Commun., 20: 1017-1021 (1999).
[27] Jones C.J., Medicinal Applications of Coordination Chemistry, “Royal Societyo Chemistry”. Ch., 3: 101–200 (2007).
[28] Syper L., Kloc K., Mlochowski J., Szulc Z., An Improved Synthesis of Benzo- and Naphthoquinones from Hydroquinone Dimethyl Ethers, Synthesis, 7: 521-522 (1979).
[30] K. Nakamoto, "Inferared and Raman Spectra of Inorganic and Coordination Compounds", ـJohn Wiley & Sons Inc., part B, (1997).
[31] Pavia D.L., Lampman G.M., Kriz G.S., "Introduction to Spectroscopy", Brooks/Cole, 2001.