Dynamic Modeling and Optimization of Steam Methane Reforming

Document Type : Research Article

Authors

Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, I.R. IRAN

Abstract

The main goal of this research is dynamic modeling and optimization of the steam methane reforming process in an industrial hydrogen plant in a crude oil refinery. In the first step, the process is heterogeneously modeled based on the mass and energy balance equations considering catalyst deactivation. Since the reforming reactions are under mass transfer control in the catalyst, the effectiveness factor is calculated and applied in the model. Then, to verify the accuracy of the model, the simulation results are compared with the plant data. The simulation results show that hydrogen production capacity decreases and approaches from 27.4 to 24.4 mole/s due to catalyst deactivation. In the next step, considering the uniform hydrogen production as an objective function and operational limitations in the process, a single objective optimization problem is formulated to overcome the production decay. Based on the formulated optimization problem, the optimal dynamic trajectories of feed temperature, furnace temperature, and steam to methane ratio are calculated during the process run time. Based on the simulation results, the hydrogen production is improved by about 6% applying optimal conditions to the system.

Keywords

Main Subjects


[1] باقری، مهدی؛ فاطمی، شهره؛ تیراندازی، بهنام؛ غنی یاری، سعید؛ بهینه سازی کوره و راکتور لوله ای صنعتی فرایند ریفرمینگ گاز طبیعی با بخار با استفاده از الگوریتم ژنتیک، نشریه شیمی و مهندسی شیمی ایران، (1)28: 1 تا 12 (1388).
[2] Zamaniyan A., Taghi Zoghi A., Software Development for Simulation of Reformer Furnace,
Iran. J. Chem. Chem. Eng
., 25(4): 55-71 (2006).
[3] Sabeeh G., Palanki S., Sylvester N.D., El-Sharkh M.Y., Modeling and Analysis of a Hydrogen Reformer for Fuel Cell Applications, Heat Transfer Engineering, 40: 1153-1161 (2019).
[4] وافری، بهزاد؛ کرمی، حمیدرضا؛ کریمی، غلامرضا؛ مدل سازی فرایند ریفرمینگ گاز طبیعی با بخار آب در راکتور غشایی پالادیم-نقره برای تولید هیدروژن خالص، نشریه شیمی و مهندسی شیمی ایران، (3)30: 25 تا 16 (1390)
[6] Pasel J., Samsun R.C., Tschauder A., Peters R., Stolten D., Advances in Autothermal Reformer Design, Applied Energy, 198: 88-98 (2017).
[7] Bahadori N., KarimZadeh R., OmidKhah M., “Simulation Results of Catalyst Deactivation for the Steam Reforming of Methane in a Fixed Bed Reactor”, 12th Chemical Engineering Congress and Exibitation, Tabriz (2007).
[9] Mohammed S.E., Hussin A.M., Alameen A.A., Mohammed R.A., Wagiallah K.M., Production of Hydrogen through Methane Steam Reforming in a Fixed Bed Reactor Using MATLAB Simulation, University of Khartoum Engineering Journal, 4(2): 1-10 (2015).
[10] Sadooghi P., Rauch. R., “Mathematical Modeling and Experimental Study of Hydrogen Production by Catalytic Steam Reforming of Methane”, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers (2013).
[11] Li P., Chen L., Xia S., Zhang L., Maximum Hydrogen Production Rate Optimization for Tubular Steam Methane Reforming Reactor, International Journal of Chemical Reactor Engineering, (2019).
[12] Asleshirin S., Bahmani M., Fazlali A., Fadavi O., The Static and Dynamic Modeling of a Steam Methane Reforming Hydrogen Plant, Petroleum Science and Technology, 30(18): 1882-1892 (2012).
[13] Shahhosseini H.R., Farsi M., Eini S., Multi-Objective Optimization of Industrial Membrane SMR to Produce Syngas for Fischer-Tropsch Production Using NSGA-II and Decision Makings, Journal of Natural Gas Science and Engineering, 32: 222-238 (2016).
[14] Farsi M., Shahhosseini H.R., A Modified Membrane SMR Reactor to Produce Large-Scale Syngas: Modeling and Multi Objective Optimization, Chemical Engineering and Processing: Process Intensification, 97: 169-179 (2015).
[16] Taji M., Farsi M., Keshavarz P., Real Time Optimization of Steam Reforming of Methane in an Industrial Hydrogen Plant, International Journal of Hydrogen Energy, 3(29): 13110-13121 (2018).
[17] Nieva M.A., Villaverde M.M., Monzón A., Garetto T.F., Marchi A.J., Steam-Methane Reforming at Low Temperature on Nickel-Based Catalysts, Chemical Engineering Journal, 235: 158-166 (2014).
[18] Xu J., Froment G.F., Methane Steam Reforming, Methanation and Water‐Gas Shift: I. Intrinsic Kinetics, AIChE Journal, 35(1): 88-96 (1989).
[19] Hou K., Hughes R., The Kinetics of Methane Steam Reforming over a Ni/α-Al2O Catalyst, Chemical Engineering Journal, 82(1-3): 311-328 (2001).
[20] Hoang D., Chan S., Ding O., Kinetic and Modelling Study of Methane Steam Reforming over Sulfide Nickel Catalyst on a Gamma Alumina Support, Chemical Engineering Journal, 112(1-3): 1-11 (2005).
[21] Alam I., West D.H., Balakotaiah V., Transport Effects on Pattern Formation and Maximum Temperature in Homogeneous–Heterogeneous Combustion, Chemical Engineering Journal, 288: 99-115 (2016).
[22] Holman J., “Heat Transfer”, McGraw-Hill, New York (2001).
[23] Fogler HS., “Elements of Chemical Reaction Engineering”, Prentice Hall, New York (2016).
[25] Polling B.E., Prausnitz J. M., O’Connell J.P., “The Properties of Gases and Liquids”, McGraw Hill, New York (2000).
[26] Rostrup-Nielsen J.R., Production of synthesis gas, Catalysis Today, 18(4): 305-324 (1993).
[27] Rostrup-Nielsen J.R., Sehested J., Nørskov J.K., Hydrogen and Synthesis Gas by Steam-and CO2 Reforming, Advances in Catalysis, 47: 65-139 (2002).
[28] Pen M., Gomez J., Fierro J.G., New Catalytic Routes for Syngas and Hydrogen Production, Applied Catalysis A: General, 144: 7-57 (1996).