Investigation on Production of the Beta-Carotene Biopolymer from Dunaliella Salina Algae in Saline Water of the Urmia Lake

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Shahid Madani University of Azerbaijan, Tabriz, I.R. IRAN

2 Department of Plant Production and Genetics Engineering, Faculty of Agriculture, Maragheh University, Maragheh, I.R. IRAN

3 Department of Chemical Engineering, Faculty of Engineering, Maragheh University, Maragheh, I.R. IRAN

4 Department of Soil Science, Faculty of Agriculture, Maragheh University, Maragheh, I.R. IRAN

Abstract

Vitamin A deficiency is a major public health problem worldwide, especially in developing nations, where the availability of foods containing preformed vitamin A is limited. Beta-carotene can be used as a precursor to vitamin A and has an antioxidant effect. The green unicellular flagellate Dunaliella salina is the richest natural source of the carotenoid β-carotene. Carotenoids are a class of pigments that contain beta-carotene. Under stress conditions such as high light intensity, salinity stress, or nutrient starvation, cells of the unicellular alga Dunaliella salina overproduce β-carotene. The most suitable media for the isolated Dunaliella species at lab scale cultivation was found to be modified Johnson media, which gave the highest growth and β-carotene production so that Dunaliella cells were cultivated in an inorganic media (Johnson media). Operating conditions in the salinity stress tests and light stress in incubator shaker, temperature 28 ° C, with light intensity 100 LUX have been used. In this study, 2% (w/v) Salt of Urmia lake, 20% (w/v) Salt of Urmia lake, 20% (w/v) Salt of Urmia Lake with 25 (μM) Thiamine and 2% (w/v) Salt of Urmia Lake with high light intensity, 20% (w/v) Salt of Urmia lake with high light intensity, 20% (w/v) Salt of Urmia lake with high light intensity and 25 (μM) Thiamine on pure samples of microalgae Dunaliella Salina have been applied. Then, Cell Counting, Dry weight, Optical Density, chlorophyll production, Carotenoid, Protein, and accumulation of beta-carotene have been studied.

Keywords

Main Subjects


[3] Murthy K.N., Rajesha J., Vanitha A., Sowmya P.R., Mathadera Swamy, M., Ravishankar, G.A., In-Vivo Antioxidant Activity of Cartenoids from Dunaliella Salina-A Green Microalgae, Life Sci. 76 (12): 81-90 (2005).
[4] Tafreshi A. H., Shariati M.., Pilot Culture of Three Strains of Dunaliella Salina for β-Carotene Production in Open Ponds in the Central Region of Iran, World. J. Biol.Psychiatry. (22(9): 1003-1006 (2006).).
[5] Ben-Amotz A, Shaish A, Avron M., The Biotechnology of Cultivating Dunaliella for Production of β-Carotene Rich Algae, Bioresour Technol, 38(2-3): 233-235 (1991).
 [6] Hejazi M.A., Wiiffels R.H., Effect of Light Intensity on β-Carotene Production and Extraction by Dunaliella Salina in Two-Phase Bioreactors, Biomol. Eng. 20 (4-6): 171-175 (2003).
[7] Borowitzka L., Development of Western Biotechnology's Algal β-Carotene Plant, Bioresour. Technol. 38(2-3): 251-252 (1991).
[8] Ben-Amotz A., New Mode of Dunaliella Biotechnology: Two-Phase Growth for β-Carotene Production, J. Appl. Phycol.. 7(1): 65-8 (1995).
[9] Gonzalez M.J., Moreno J., Monzano J.C., Florencio F.J., Guerrero M.G., Production of  Dunaliella Salina Biomass Rich in 9-Cis- Beta-Carotene and Lutein in a Closed Tubular Photo Bioreactor, J. Biotech. 115(1): 81-90 (2005).).
[10] یوسفی، م؛ “ تالوفیتها”، انتشارات دانشگاه پیام نور، 279 (1382).
[11] Frank H.A, Cogdell R.J., Carotenoids in Photosynthesis, Photochem. Photobiol. 63: 257-64 (1996). 
[12] Campo J., García-González M., Guerrero M., Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives, Appl. Microbiol. Biotechnol. 74:1163-1174 (2007).
[13] Christaki E., Bonos E., Giannenas I., Florou-Paneri P., Functional Properties of Carotenoids Originating from  Algae, J. Sci. Food. Agric, 93:5-11 (2013).
[14] Yuan J.P., Peng J., Yin K., Wang J.H., Potential Health-Promoting Effects of Astaxanthin: A High-Value Carotenoid Mostly from Microalgae, Mol. Nutr. Food. Res. 55:150-165 2011).).
[15] اسفندیاری، ع؛ محبوب، س؛ “بیوشیمی گیاهی)”جلد دوم(، انتشارات دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تبریز، 322 (1393).
[16] Eijckelhoff C., Dekker J.P., Determination of the Pigment Stoichiometry of the Photochemical Reaction Center of Photosystem II, Biochim. Biophys. Acta. 1231(1): 21-28 (1995).).
[20] López C.V.G., García. Protein Measurements of Microalgal and Cyanobacterial Biomass, Bioresour. Technol. 101(19): 7587-7591(2010).
[22] Waterborg J.H., The Lowry Method for Protein Quantitation, “The Protein Protocols Handbook”, Springer. (2009).
[23] Nikokar  K., Moradshahi A., Kharati  M., Influence of Salinity on the Growth, Pigmentation and Ascorbate Peroxidase Activity Dunaliella Salina Isolated from Maharlu Salt Lake in Shiraz,Iran. J. Sci. Technol. Trans. A. Sci. 28: 117-125(2004).
[25] Hejazi M., Holwerda E., Wijffels R., Milking Microalga Dunaliella Salina for β‐Carotene Production in Two‐Phase Bioreactors, ‎Biotechnol. Bioeng. 85(5): 475-481(2004).
[26] Kirrolia A., Bishnoi N. R., Singh  N., Salinity as a Factor Affecting the Physiological and Biochemical Traits of Scenedesmus Quadricauda, J. Algal. Biomass. Utln. 2: 28-34 (2011).
[27] Chen H., Jiang J., Osmotic Responses of Dunaliella to the Changes of Salinity, J. Cell. Physiol. 219: 251-258 (2009).