Thermodynamic Study of Decomposition Reactions of Cyanuric Triazide Explosive Using Density Functional Theory

Document Type : Research Article


School of Chemistry, Damghan University, Damghan, I.R. IRAN


Cyanuric triazide is an environmentally friendly explosive organic compound that can be used as a primary explosive in the construction of detonators. The decomposition of this compound produces a number of high-energy nitrene intermediates. This compound is decomposed after the explosion under vacuum into molecular nitrogen and cyanogen. In this article, the density functional theory (DFT) and B3LYP/6-311++G(2d,p) method were used for the thermodynamic study of decomposition reactions of cyanuric triazide. The thermodynamic constants such as total energy, internal energy, enthalpy, entropy, and Gibbs free energy were calculated for these reactions in the gas phase and solution. A range of solvents with different polarities was studied. Also, the effect of temperature on the thermodynamic constants of the reactions was investigated. The results showed that decomposition reactions of cyanuric triazide to nitrene intermediates are endothermic, while decomposition to cyanogen is very exothermic. All of these reactions are associated with increasing entropy (increasing disorder) and decreasing Gibbs free energy (spontaneous) across the reaction. The ΔG value of all reactions decreased with increasing temperature, which indicates the progress of reactions at higher temperatures.


Main Subjects

[1] Agrawal J.P., “High Energy Materials: Propellants, Explosives and Pyrotechnics”, Wiley-VCH Verlag GmbH & Co. KGaA., Weinheim (2010).
[2] Klapötke T.M., “Chemistry of High-Energy Materials”, 3rd ed., Walter De Gruyter GmbH, Berlin (2015).
[3] Brinck T., “Green Energetic Materials”, John Wiley & Sons, Inc., Chichester (2013).
[4] Appalakondaiah S., Vaitheeswaran G., Lebègue S., Structural, Elastic, Optical Properties and Quasiparticle Band Structure of Solid Cyanuric Triazide, Chem. Phys. Lett., 605-606:10-15 (2014).
[5] Laniel D., Downie L.E., Smith J.S., Savard D., Murugesu M., Desgreniers S., High Pressure Study of a Highly Energetic Nitrogen-Rich Carbon Nitride, Cyanuric Triazide, J. Chem. Phys., 141:234506 (2014).
[6] Anguang H., Fan Z., A Nitrogen-Rich C3N12 Solid Transformed from Cyanuric Triazide under High Pressure and Temperature, J. Phys. Condens. Matt., 22:505402 (2010).
[7] Korsunskiy B.L., Nedel’ko V.V., Zakharov V.V., Chukanov N.V., Chervonnyi A.D., Larikova T.S., Chapyshev S.V., Thermochemistry of Evaporation and Sublimation of 2,4,6-Triazido-1,3,5-Triazine, Propell. Explos. Pyrotech, 42:123-125 (2017).
[8] Lempert D., Chapyshev S., Kazakov A., Plishkin N., Shikhovtsev A., Yanovskii L., Thermochemical and Energy Characteristics di-, tri-, and Tetra-Azido-Substituted Azines as Gasifying Agents of Solid Fuels for Ramjet Engines, Combust. Explos. Shock Waves, 55:23-31 (2019).
[9] Chapyshev S.V., Six-Membered Aromatic Polyazides: Synthesis and Application, Molecules, 20: 19142-19171 (2015).
[10] Agrawal J.P., Hodgson R.D., “Organic Chemistry of Explosives”, John Wiley & Sons Inc., Chichester (2007).
[11] Matyas R., Pachman J., “Primary Explosives”, Heidelberg Springer-Verlag, Berlin (2013).
[12] Singh M.S., “Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions”, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2014).
[13] Nedel’ko V.V., Korsunskii B.L., Larikova T.S., Chapyshev S.V., Chukanov N.V., Yuantsze S., Thermal Decomposition of 2,4,6-Triazido-1,3,5-Triazine, Russ. J. Phys. Chem. B, 10:570-575 (2016).
[14] Sato T., Narazaki A., Kawaguchi Y., Niino H., Bucher G., Grote D., Jens Wolff J., Henning Wenk H., Sander W., Generation and Photoreactions of 2,4,6-Trinitreno-1,3,5-triazine, a Septet Trinitrene, J. Am. Chem. Soc., 126:7846-7852 (2004).
[16] Zamani M., Keshavarz M.H., New NHNO2 Substituted Borazine-Based Energetic Materials with High Detonation Performance, Comput. Mater. Sci., 97:295-303 (2015).
[18] خان محمدی، آزاده. مطالعه نظری برهمکنش­ های مولکولی مشتق­ های بنزن پارا استخلاف­ شده با هیدروژن سیانید، نشریه شیمی و مهندسی شیمی ایران، (2)36: 21تا33 (1396).
[19] سلیمانی امیری، سمیه. بررسی ساختار، پایداری و راسمیزاسیون ایزومرهای تری‌آزا‌سیکلوهپتاتتراان‌ از دیدگاه محاسبه های نظری، نشریه شیمی و مهندسی شیمی ایران، (2)39: 183تا196 (1399).
[20] نیکمرام، فرخ رویا. نجف پور، جمشید. شیخ، بهزاد. تغییر انرژی اتم ها در ایزومریزاسیون FOX-7، نشریه شیمی و مهندسی شیمی ایران، (2)38: 145تا152 (1398).
[21] Singh B., Singh R., Singh B., Kumar D., Computational Investigation of Structure and Reactivity of Methyl Hydrazinecarbodithioate, Iran. J. Chem. Chem. Eng. (IJCCE), 37(2):117-131 (2018).
[22] He L., Dong W., Chuanming W., DFT Study on the Possible Intramolecular Rearrangement of four Monocyclic Monoterpenes, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1):169-173 (2018).