Optimization of Carbon Dioxide Adsorption Process by Micro-Porous Polymer Adsorbent

Document Type : Research Article

Authors

1 Chemical Engineering Department, Guilan University, Rasht, I.R. IRAN

2 School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, I.R. IRAN

Abstract

Hyperlinked polymers (HCPs) are one of a variety of microporous polymers with a pore size of about nm, which is very important for the capture and storage of carbon dioxide. In this work, benzene-based HCP adsorbents synthesized on the basis of the Friedl-Kraft reaction have been investigated experimentally for the capture of carbon dioxide. The surface-response method was used to optimize process parameters to increase the carbon dioxide absorption capacity. The pressure, temperature, Kraselinker to benzene ratio, and synthesis time as process parameters and absorption capacity are also considered as the response of this method. The optimal values of pressure, temperature, Kraselinker to benzene ratio, and synthesis time, which maximize absorption capacity, are 5.857 bar, 21.331 ° C, 2.189, and 14.357 h, respectively. According to the optimum condition, the absorption capacity of carbon dioxide was calculated as 244.43 mg/g of adsorbent.

Keywords

Main Subjects


[1]   Saeidi, M., Ghaemi, A., Tahvildari, K., Derakhshi, P., Exploiting Response Surface Methodology (RSM) as a Novel Approach for the Optimization of Carbon Dioxide Adsorption by Dry Sodium Hydroxide, Journal of the Chinese Chemical Society, 65(12): 1465-1475 )2018).
[2] فاطمه فشی، احد قائمی، پیمان مرادی، مقایسه عملکرد جاذب­های زئولیت و آلومینا با محلول پپیرازین برای افزایش شدت جذب کربن‌دی‌اکسید، نشریه شیمی و مهندسی شیمی ایران، (2)39 : صفحه 99189 تا 110 (1399).
[3] مرضیه مهدی زاده، احد قائمی، مدل‌سازی و شبیه‌سازی ستون بسترثابت جذب واکنش‌دار کربن‌دی‌اکسید توسط پلی‌اسپارتامید، نشریه شیمی و مهندسی شیمی ایران، (4)38 : صفحه 189 تا 198 (1398).
[4] زهرا رستگار، احد قائمی، منصور شیروانی، مطالعه تجربی کربن دی اکسید با استفاده از محلول آبی پتاسیم هیدروکسید، نشریه شیمی و مهندسی شیمی ایران، (1)40: 115تا 126 (1400).
 [5] Karbalaei Mohammad N., Ghaemi A., Tahvildari K., Mehrdad Sharif A.A., Experimental Investigation and Modeling of CO2 Adsorption Using Modified Activated Carbon, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(1): 177-192 (2020).
[6] Karbalaei Mohammad N., Ghaemi A., Tahvildari K., Hydroxide Modified Activated Alumina as an Adsorbent for CO2 Adsorption: Experimental and Modeling, International Journal of Greenhouse Gas Control, 88: 24-37 (2019)
[7] Taheri F.S., Ghaemi A., Maleki A., Shahhosseini S., High CO2 Adsorption on Amine-Functionalized Improved Mesoporous Silica Nanotube as an Eco-Friendly Nanocomposite, Energy and Fuels, 33: 5384-5397, (2019).
[8] Fashi F., Ghaemi A., Moradi P., Piperazine-Modified Activated Alumina as a Novel Promising Candidate for CO2 Capture: Experimental and Modeling, Greenhouse Gases: Science and Technology, 9(1): 37-51, (2019)
[9] Davankov V.A., Tsyurupa M.P., "Hypercrosslinked Polymeric Networks and Adsorbing Materials: Synthesis, Properties, Structure, and applications". Elsevier: Amsterdam, 56: (2010).
[10] Dawson R., Cooper A.I., Adams D.J., Nanoporous Organic Polymer Networks, Progress in Polymer Science. 37: 530-563 (2012).
[11] Taheri F.S., Ghaemi A., Maleki A.,  High Efficiency and Eco-Friendly TEPA-Functionalized Adsorbent with Enhanced Porosity for CO2 Capture, Energy & Fuels, (2019).
[13] Ren S., Dawson R., Laybourn A., Jiang J.-X., Khimyak Y., Adams D.J., Cooper A.I., Functional Conjugated Microporous Polymers: from 1,3,5-Benzene to 1,3,5-Triazine, Polymer Chemistry. 3: 928-934 (2012).
[14] Ren S., Bojdys M.J., Dawson R., Laybourn A., Khimyak Y.Z., Adams D.J., Cooper A.I., Porous, Fluorescent, Covalent Triazine-Based Frameworks via Room-Temperature and Microwave-Assisted Synthesis, Advanced Materials. 24: 2357-2361 (2012).
[15] Ben T., Qiu S., Porous Aromatic Frameworks: Synthesis, Structure and Functions, Cryst. Eng. Communications. 15(1): 17-26, (2013).
[16] Martin C.F., Stockel E., Clowes R., Adams D.J., Cooper A.I., Pis J.J., Rubiera F., Pevida C., Hypercrosslinked Organic Polymer Networks as Potential Adsorbents for Pre-Combustion CO2 Capture, Journal of Materials Chemistry. 21: 5475-5483 (2011).
[17] Luo Y., Li B., Wang W., Wu K., Tan B., Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials, Advanced Materials. 24: 5703-5707 (2012).
[18] Saleh M., Lee, H.M., Kemp K.C., Kim K.S., Highly Stable CO2 /N2 and CO2 /CH4 Selectivity in Hyper-Cross-Linked Heterocyclic Porous Polymers, ACS Applied Materials & Interfaces. 6(10): 7325-733 (2014).
[19] Wang J., Song W., Yi, G., Zhang Y., Imidazolium Salts-Modified Porous Hypercrosslinked Polymers for a Synergistic CO2 Capture and Conversion, Chemical Communications. 51(60): 12076-12079 (2015).
[20] N., F., M.R. M., B. F., C. P.A.G., Hypercrosslinked Materials: Preparation, Characterisation and Applications, Polymer Chemistry. 6(41): 7231-7244, (2015).
[21] Rajangam Vinodh, E. Min Jung, Mani Ganesh, M. Mei Peng, Aziz Abidov, Muthiahpillai Palanichamy., Seog Cha, W., Tae Jang, H., Novel Microporous Hypercross-Linked Polymers as Sorbent for Volatile Organic Compounds and CO2 Adsorption, Journal of Industrial and Engineering Chemistry. 21: 1231-1238, (2015).
[22] V., D., R. V., T. M., Macronet Polystyrene Structures for Ionites and Method of Producing Same, U. Patent, Editor. (1973).
[24] Li B., Gong R., Wang W., Huang X., Zhang W., Li,H., Hu C., Tan B., A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker, Macromolecules. 44: 2410-2414 (2011).
[25] Myers R.H., Montgomery D.C., Anderson-Kook, C.M., "Response Surface Methodology: Process and Product Optimization Using Designed Experiments" 4th ed., John Wiley & Son Inc. (2016).
[26] Wang, S., Song, K., Zhang, C., Shu, Y., Li, T., Tan, B., Novel Metalporphyrin-Based Microporous Organic Polymer with High CO2 Uptake and Efficient Chemical Conversion of CO2 Under Ambient Conditions, Journal of Materials Chemistry A. 5: 1509-1515, (2017).