Design of Robust High-Purity Distillation Columns under Feed Quality Disturbances

Document Type : Research Article

Author

Faculty of Chemical Engineering, Tabriz Sahand University of Technology, Tabriz, I.R. IRAN

Abstract

The main contribution of this work is the development of a control system with improved robustness against the feed composition disturbances in a high-purity distillation column separating the mixture of water and 40 mol% methanol. Despite the superior performance of an inferential control system with one temperature measurement along with a constant reflux-to-feed ratio in comparison to a fixed reflux ratio, however, it fails to provide acceptable performance. Methanol feed composition is taken as a Gaussian variable to obtain a more robust single-end control system. The set of decision variables is constructed considering the design parameters and the set points of the PI controllers. The first and second moments of the constraints and objective function are provided using the unscented transform for the solution of the stochastic optimization problem in the chance-constrained sense. The dynamic responses of the modified single-end control system against unmeasured disturbances in feed composition confirm the effectiveness of the proposed algorithm since product quality can be guaranteed to lie above the desired purity.

Keywords

Main Subjects


[1] Luyben, W.L., “Distillation Design and Control Using Aspen Simulation”, John Wiley & Sons, Inc., (2013).
[2] Valadkhani A., Shahrokhi M., Simulation and Control of an Aromatic Distillation Column, Iran. J. Chem. Chem. Eng. (IJCCE), 26(2): 97-108 (2007).
[3] Luyben, W.L., “Practical Distillation Control”, Springer Science & Business Media (2012).
[4] Ahmadian Behrooz H., Robust Design and Control of Extractive Distillation Processes under Feed Disturbances, Ind. Eng. Chem. Res., 56: 4446-4462 (2017).
[5] Tan L., Yang C., Zhou N., Synthesis/Design Optimization of SOFC–PEM hybrid System under Uncertainty, Chin. J. Chem. Eng., 23: 128-137 (2015).
[6] Fu Y., Diwekar U.M., Young D., Cabezas H., Process Design for the Environment: A Multi-Objective Framework Under Uncertainty, Clean Prod. Process., 2: 92-107 (2000).
[7] Chen Y., Yuan Z., Chen B., Process Optimization with Consideration of Uncertainties-An Overview, Chin. J. Chem. Eng., 26: 1700-1706 (2018).
[8] Wang F., Luo Y., Yuan X., A Formulation Methodology for Multicomponent Distillation Sequences Based on Stochastic Optimization, Chin. J. Chem. Eng., 24: 1229-1235 (2016).
[9] Saldarriaga-Cortés C., Salazar H., Moreno R., Jiménez-Estévez G., Stochastic Planning of Electricity and Gas Networks: An Asynchronous Column Generation Approach, Appl. Energy, 233: 1065–1077 (2019).
[10] Kang L., Liu Y., Synthesis of Flexible Heat Exchanger Networks: A Review, Chin. J. Chem. Eng., (2018).
[11] Dige N., Diwekar U., Efficient Sampling Algorithm for Large-Scale Optimization under Uncertainty Problems, Comput. Chem. Eng., 115: 431-454 (2018).
[12] Li S., Lou H.H., A Strategy for Multi-Objective Optimization Under Uncertainty in Chemical Process Design, Chin. J. Chem. Eng., 16: 39-42 (2008).
[13] Emenike V.N., Xiangzhong X., Schenkendorf R., Spiess A., Krewer U., Robust Dynamic Optimization of Enzyme-Catalyzed Carboligation: A Point Estimate-Based Back-Off Approach, Comput. Chem. Eng., 121: 232-247 (2018).
[14] صادق پور، پریسا؛ حقیقی، محمد؛ بررسی تأثیر غلظت منگنز و نیکل در سنتز کاتالیست نانوساختار MnNiAPSO-34 برای تبدیل متانول به الفین های سبک، نشریه شیمی و مهندسی شیمی ایران، (1)34: 11 تا 27 (1394).
[15] سید علیزاده گنجی ، سیدمحمد؛ حیاتی، محمد، بهینه سازی فرایند جدایش تفریقی دیسپروسیم و گادولینیم تحت شرایط عدم قطعیت، نشریه شیمی و مهندسی شیمی ایران، (3)37: 157 تا 172 (1398).
[16] Luyben W.L., Use of Mass or Molar Reflux-to-Feed Ratios in Distillation Single-End Control Structures, Ind. Eng. Chem. Res., 52: 15883-15895 (2013b).
[18] Tyreus B.D., Luyben W.L., Tuning PI Controllers for Integrator/Dead Time Processes, Ind. Eng. Chem. Res., 31: 2625-2628 (1992).
[19] Li P., Arellano-Garcia H., Wozny G., Chance Constrained Programming Approach to Process Optimization under Uncertainty, Comput. Chem. Eng., 32: 25-45 (2008).
[20] Sahinidis N.V., Optimization Under Uncertainty: State-of-the-Art and Opportunities, Comput. Chem. Eng., 28: 971-983 (2004).
 [21] Flemming T., Bartl M., Li P., Set-point Optimization for Closed-Loop Control Systems under Uncertainty, Ind. Eng. Chem. Res., 46: 4930-4942 (2007).
[22] Ahmadian Behrooz H., Managing Demand Uncertainty in Natural Gas Transmission Networks, J. Nat. Gas Sci. Eng., 34: 100-111 (2016).
[23] Julier S.J., Uhlmann J.K., Unscented Filtering and Nonlinear Estimation, Proc. IEEE., 92: 401-422 (2004).
[24] Van Der Merwe, R., “Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models”, Oregon Health & Science University, (2004).
[25] Kandepu R., Imsland L., Foss B.A., “Constrained State Estimation Using the Unscented Kalman Filter”, Control and Automation, 16th Mediterranean Conference on …. Citeseer, 1453-1458 (2008).