Three-Dimensional Modeling and Simulation of a High-Temperature PEM Fuel Cell with Novel Composite Membranes based on Dicationic Ionic Liquid and Polybenzimidazole Mixtures

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Amirkabir Univerity of Technology, Tehran, I.R. IRAN

2 Faculty of Chemistry, Urmia University, Urmia, I.R. IRAN

3 Department of Chemistry, Amirkabir University of Technology, Tehran- Responsive Energy Research Institute, Amirkabir University of Technology, Tehran, I.R. IRAN

4 Department of Chemical Engineering, Shahid Chamran University, of Ahwaz, Ahwaz, I.R. IRAN

Abstract

In the current paper, a three-dimensional, steady-state model has been introduced for novel proton exchange membranes (PEM) containing dicationic ionic liquids appropriatefor elevated temperature fuel cells under an anhydrous environment. Development of such a model requires utilizing the 3D geometry and detailed mesh grid and discretization of momentum. Mass and electric charge balance equations were solved based on the information obtained from electrical and electrochemical models within various areas of the cell such as porous electrodes, gas channels, and the solid parts and current collector, especially. Additionally, a description of the electrochemical reactions on the active sites of the anode and cathode electrodes, and ions' movement through the electrolyte is considered. The equations were solved by applying a finite element method solver. Finally, the results of the model are compared with the experimental data (current density-voltage graph). This graph shows a good correlation between the model and experiments validating the present simulation. This model is also able to predict PEMFC behavior under different operational conditions

Keywords

Main Subjects


[2] Zhang, Hongwei, Shen P.K., Advances in the High Performance Polymer Electrolyte Membranes for Fuel CellsChem. Soc. Rev., 41: 2382-94 (2012).
[3] Schiraldi D.A., “Polymer Electrolyte Fuel Cell Durability”, Wiley Online Library (2009).
[4] Curtin D.E., Lousenberg R.D., Henry T.J., Tangeman P.C., Tisack M.E., Advanced Materials for Improved PEMFC Performance and Life, J. Power Sources, 131:41–8 (2014).
[7] Hooshyari K.H., Javanbakht M., Naji L., Enhessari M., Nanocomposite Proton Exchange Membranes Based on Nafion Containing Fe2TiO5 Nanoparticles in Water and Alcohol Environments for PEMFC, J. Membr. Sci., 454: 74–81 (2014).
[8] Tang H., Peikang S., Jiang S.P., Wang F., Pan M., A Degradation study of Nafion Proton Exchange Membrane of PEM Fuel Cells, J. Power Sources, 170: 85– 92 (2007).
[9] Mariana D., Alfredo O., Miguel V., Emilia T., Inmaculada O., Performance of PEMFC with New Polyvinyl-Ionic Liquids Based Membranes as Electrolytes. Int J Hydrogen Energy, 39: 3970-7 (2014).
 [10] Cele N, Sinha S., Recent Progress on Nafion-Based Nanocomposite Membranes for Fuel Cell Applications, Macromol Mater Eng, 294: 719-38 (2009).
[11] Kongstein O.E., Berning T., Borresen B., Seland F., Tunold R., Polymer Electrolyte Fuel Cells Based on Phosphoric Acid Doped Polybenzimidazole (PBI) Membranes, Energy, 32: 418-22 (2007).
[12] Chen C.Y., Garnica J.I., Duke M.C., Dalla R.F., Dicks A.L., Dniz J.C., Nafion/Polyaniline/Silica Composite Membranes for Direct Methanol Fuel Cell Application, J. Power Sources, 166: 324-30 (2007).
[13] Li Q., He R., Jensen J.O., Bjerrum N.J., PBI-Based Membrane for High Temperature Fuel Cells-Preparation, Characterization and Fuel Cell Demonstration, Fuel Cells, 147: 147-59 (2004).
[14] Shabanikia A., Javanbakht M., SalarAmoli H., Hooshyari K.H., Enhessari M., Polybenzimidazole/Strontium Cerate Nanocomposites with Enhanced Ionic Conductivity for Proton Exchange Membrane Fuel Cells Operating at High Temperature, Electrochim Acta, 154: 370-8 (2015).
[15] Shabanikia A., Javanbakht M., SalarAmoli H., Hooshyari K.H., Enhessari M., Novel Nanocomposite Membranes Based on Polybenzimidazole and Fe2TiO5 Nanoparticles for Proton Exchange Membrane Fuel Cells, Ionic, 21: 2227-36 (2015).
[17] Antonio J., Eduardo A., Sanchezab M., Gomez-Romero P., Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest, Chem Soc Rev, 39: 3210-39 (2010).
[18] Kreuer K.D., “Proton Conductivity: Materials and Applications”, Chem Mater, 8: 610-41 (1996).
[19] Qingfeng L., Jens O., Robert F., Niels J., High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells. Prog Polym Sci, 34: 449-77 (2009).
[20] Vandeven E., Chairuna A., Merle G., Pacheco S., Borneman Z., Nijmeijer K., The Effects of Electrolyte on the Supercapacitive Performance of Activated Calcium Carbide-Derived Carbon, J. Power Sources, 22: 202-9 (2013).
[21] Greaves T., Drummond C., Protic Ionic Liquids: Properties and Applications, Chem Rev, 108: 206-37 (2008).
[22] Vandeven E., Chairuna A., Merle G., Pacheco S., Borneman Z., Nijmeijer K., The Effects of Electrolyte on the Super Capacitive Performance of Activated Calcium Carbide-Derived Carbon, J. Power Sources, 22: 202–9 (2013).
[23] Washiro S., Yoshizawa M., Nakajima H., Ohno H., Highly Ion Conductive Flexible Films Composed of Network Polymers Based on Polymerizable Ionic Liquids, Polymer, 45: 1577-82 (2004).
[24] Earle M., Esperanc J., Gilea M., Lopes J., Magee J., Seddon K., The Distillation and Volatility of Ionic Liquids, Nature, 439: 831-4 (2006).
[26] Schauer J., Sikora A., Plıskova M., Malis J., Mazur P., Paidar M., Ion-Conductive Polymer Membranes Containing 1-Butyl-3-Methylimidazolium Trifluoromethanesulfonate and 1-Ethylimidazolium Trifluoromethanesulfonate, J. Membr. Sci. 367: 332–9 (2011).
[27] Ye H., Huang J., Xu J., Kodiweera N., Jayakody J., Greenbaum S., New Membranes Based on Ionic Liquids for PEM Fuel Cells at Elevated Temperatures, J. Power Sources, 178: 651–60 (2008).
[29] Eguizabal A., Lemus J., Roda V., Urbiztondo M., Barreras F., Pina P.M., Nanostructured Electrolyte Membranes Based on Zeotypes. Protic Ionic Liquids and Porous PBI Membranes: Preparation, Characterization and MEA Testing, Int. J. Hydrogen Energy, 37: 7221–34 (2012).
[31] Zhang Z., Yang L., Luo S., Tian M., Tachibana K., Kamijima K., Ionic Liquids Based on Aliphatic Tetraalkylammonium Dications and TFSI Anion as Potential Electrolytes. J Power Sources, 167: 217-22 (2007).
[32] Pitawala J., Matic A., Martinelli A., Jacobsson P., Koch V., Croce F., Thermal Properties and Ionic Conductivity of Imidazolium Bis(Trifluoromethanesulfonyl)Imide Dicationic Ionic Liquids, J Phys Chem B, 113: 10607-10 (2009).
[33] Armand M., Endres F., Macfarlane D., Ohno H., Ionic-Liquid Materials for the Electrochemical Challenges of the Future, Nat Mater, 8: 621-9 (2009).
[34] Payagala T., Huang J., Breitbach Z., Sharma P., Armstrong D., Unsymmetrical Dicationic Ionic Liquids: Manipulation of Physicochemical Properties Using Specific Structural Architectures, Chem. Mater, 19: 5848–50 (2007).
[35] Ishida T., Shirota H., Dicationic Versus Monocationic Ionic Liquids: Distinctive Ionic Dynamics and Dynamical Heterogeneity, J. Phys. Chem. B, 117: 1136– 50 (2013).
[36] Zhang Z., Yan Zhou H., Yang L., Tachibana K., Kamijima K., Xu J., Asymmetrical Dicationic Ionic Liquids Based on Both Imidazolium and Aliphatic Ammonium as Potential Electrolyte Additives Applied to Lithium Secondary Batteries, Electrochim Acta, 53:4833-8 (2008).
[37] Shiro S., Yo K., Hajime M., Yasutaka O., Akira U., Yuichi M., Lithium Secondary Batteries Using Modified-Imidazolium Room-Temperature Ionic Liquid, J Phys Chem B, 110: 10228-30 (2006).
[39] Springer T.E., Zawodzinski T.A., Gottesfeld S., Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc, 138: 2334–42 (1991).
[40] Nguyen T.V., White R.E., Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells, J. Electrochem. Soc., 140: 2178–86 (1993).
[41] Gurau V., Liu H., Kakac S., Two-Dimensional Model for Proton Exchange Membrane Fuel Cells, AlChE J., 44: 2410–22 (1998).
[42] Dutta S., Shimpalee S., Van Zee J.W., Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell, Int J Heat Mass Transf., 44: 2029–42 (2001).
[43] Futerko P., Hsing I.M., Two-Dimensional Finite-Element Method Study of the Resistance of Membranes in Polymer Electrolyte Fuel Cells, Electrochim. Acta, 45: 1741–51 (2000).
[44] Ubong E.U., Shi Z., Wang X., Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel CellJ. Electrochem. Soc., 156: 1276-82 (2009).
[45] Hoogers, Gregor, “Fuel Cell Technology Handbook”, CRC Press, (2003).
[46] Osafi M. R., Kalbasi M., Omidi Bibalani I., Three-Dimensional Modeling of Solid Acid Fuel Cell with CsH2PO4-MOA (Micro-Arc Oxidation Alumina) Composite ElectrolyteInternational Journal of Hydrogen Energy, 42(8): 5351-5359 (2017).
[47] Cheddie, D. F., Munroe N.D.H., Three Dimensional Modeling of High Temperature PEM Fuel Cells,  Journal of Power Sources, 160(1): 215-223 (2006).
[48] Guvelioglu G., Stenger H., Computational Fluid Dynamics Modeling of Polymer Electrolyte Membrane Fuel CellsJ. Power Sources, 147: 95-106 (2005).
[49] Bird R., Stewart W., Lightfoot E., “Transport Phenomena”, John Wiley & Sons Inc., New York (1960).
[50] Bear J., Buchlin J., “Modelling and Applications of Transport Phenomena in Porous Media. Dordrecht The  Netherlands”, Kluwer Academic Publishers, (1991).
[51] Pramuanjaroenkij A., Kakac S., Zhou X.Y., Mathematical Analysis of Planar Solid Oxide Fuel Cells, Int. J. Hydrogen Energy, 33: 2547–65 (2008).