Synthesis and Improvement of the ZSM-11 Zeolite Characteristics with Transition Metals for Its Catalytic Application in Oxidative Desulfurization

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, I.R. IRAN

Abstract

ZSM-11 Zeolite was successfully synthesized using a seed-assisted method and a proposed template of N,N-diethylaniline. In addition, the effect of the silicon-to-aluminum ratio was investigated for seeds and the optimum ratio of 10 was obtained. Synthesized zeolites were identified using FT-IR, EDX, SEM, BET, and XRD techniques. Synthesized zeolite as a heterogeneous catalyst in the oxidative desulfurization process was used for the fuels model including n-heptane and dibenzothiophene. In order to obtain optimal reaction conditions, the effect of temperature and amount of catalyst was studied and a temperature of 100 and amount of 0.05g was chosen as optimum temperature and amount of catalyst and the effect of time in optimal conditions were investigated for different catalysts. The percentage of conversion of dibenzothiophene ion exchangeable zeolites with different intermediate metals such as molybdenum, vanadium, lanthanum, cobalt, copper, and cerium was calculated by gas chromatography and compared with each other. The results show that the Mo/ZSM-11 catalyst has high oxidation activity in comparison with other catalysts in the oxidative desulfurization reaction.

Keywords

Main Subjects


[1] Dehghan R., Anbia M., Zeolites for Adsorptive Desulfurization from Fuels: A Review, Fuel Process. Technol, 167: 99-116 (2017).
[2] Maricq M.M., Chemical Characterization of Particulate Emissions from Diesel Engines: A Review, J. Aerosol Sci, 38(11): 1079-1118 (2007).
[3] Song C., An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel, Catal. Today, 86(1-4): 211-263 (2003).
[6] Andevary H.H., Akbari A., Omidkhah M., High Efficient and Selective Oxidative Desulfurization of Diesel Fuel Using Dual-Function [Omim] FeCl4 as Catalyst/Extractant, Fuel Process. Technol, 185: 8-17 (2019).
[7] Craven M., Xiao D., Kunstmann-Olsen C., Kozhevnikova E.F., Blanc F., Steiner A., Kozhevnikov I.V., Oxidative Desulfurization of Diesel Fuel Catalyzed by Polyoxometalate Immobilized on Phosphazene-Functionalized Silica, Appl. Catal., B, 231: 82-91 (2018).
[8] Méndez F.J., Franco-López O.E., Bokhimi X., Solís-Casados D.A., Escobar-Alarcón L., Klimova T.E., Dibenzothiophene Hydrodesulfurization with NiMo and CoMo Catalysts Supported on Niobium-Modified MCM-41, Appl. Catal., B, 219: 479-491 (2017).
[9] Zhang D., Liu W.-Q., Liu Y.-A., Etim U., Liu X.-M., Yan Z.-F., Pore Confinement Effect of MoO3/Al2O3 Catalyst for Deep Hydrodesulfurization, Chem. Eng. J, 330: 706-717 (2017).
[10] López-Benítez A., Berhault G., Guevara-Lara A., NiMo Catalysts Supported on Mn-Al2O3 for Dibenzothiophene Hydrodesulfurization Application, Appl. Catal., B, 213: 28-41 (2017).
[11] Sun M., Chen W.-C., Zhao L., Wang X.-L., Su Z.-M., A PTA@ MIL-101 (Cr)-Diatomite Composite as Catalyst for Efficient Oxidative Desulfurization, Inorg. Chem. Commun, 87: 30-35 (2018).
[12] Sikarwar P., Kumar U.A., Gosu V., Subbaramaiah V., Catalytic Oxidative Desulfurization of DBT Using Green Catalyst (Mo/MCM-41) Derived from Coal Fly Ash, J. of Environ. Chem. Eng, 6(2): 1736-1744 (2018).
[13] Zeng X., Xiao X., Li Y., Chen J., Wang H., Deep Desulfurization of Liquid Fuels with Molecular Oxygen Through Graphene Photocatalytic Oxidation, Appl. Catal., B, 209: 98-109 (2017).
[14] Bhutto A.W., Abro R., Gao S., Abbas T., Chen X., Yu G., Oxidative Desulfurization of Fuel Oils Using Ionic Liquids: A Review, J Taiwan Inst Chem Eng, 62: 84-97 (2016).
[15] Faghihian H., Naeemi S., Application of a Novel Nanocomposite for Desulfurization of a Typical Organo Sulfur Compound, Iran. J. Chem. Chem. Eng. (IJCCE), 32(3): 9-15 (2013).
[16] Ahmadi Nasab N., Hassani KumLeh H., Kazemzad M., Ghavipanjeh F., Application of Spherical Mesoporous Silica MCM-41 for Adsorption of Dibenzothiophene (A Sulfur Containing Compound) from Model Oil, Iran. J. Chem. Chem. Eng. (IJCCE), 33(3): 37-42 (2014).
[17] Bakhtiari G., Bazmi M., Abdouss M., Royaee S.J., Adsorption and Desorption of Sulfur Compounds by Improved Nano Adsorbent: Optimization Using Response Surface Methodology, Iran. J Chem. Chem. Eng. (IJCCE), 36(4): 69-79 (2017).
[18] Dyballa M., Becker P., Trefz D., Klemm E., Fischer A., Jakob H., Hunger M., Parameters Influencing the Selectivity to Propene in the MTO Conversion on 10-Ring Zeolites: Directly Synthesized Zeolites ZSM-5, ZSM-11, and ZSM-22, Appl. Catal., A, 510: 233-243 (2016).
[19] Chu P., Crystalline Zeolite ZSM-11, Google Patents, 1973.
[20] Kokotailo G., Chu P., Lawton S., Meier W., Synthesis and Structure of Synthetic Zeolite ZSM-11, Nature, 275 (5676): 119 (1978).
[21] Vinaches P., Alves J.A.B., Melo D.M., Pergher S.B., Raw Powder Glass as a Silica Source in the Synthesis of Colloidal MEL Zeolite, Mater. Lett, 178: 217-220 (2016).
[22] Sánchez M., Díaz R.D., Córdova T., González G., Ruette F., Study of Template Interactions in MFI and MEL Zeolites Using Quantum Methods, Micropor. Mesopor. Mat, 203: 91-99 (2015).
[23] Conte M., Xu B., Davies T.E., Bartley J.K., Carley A.F., Taylor S.H., Khalid K., Hutchings G.J., Enhanced Selectivity to Propene in the Methanol to Hydrocarbons Reaction by Use of ZSM-5/11 Intergrowth Zeolite, Micropor. Mesopor. Mat, 164: 207-213 (2012).
[24] Yu Q., Cui C., Zhang Q., Chen J., Li Y., Sun J., Li C., Cui Q., Yang C., Shan H., Hierarchical ZSM-11 with Intergrowth Structures: Synthesis, Characterization and Catalytic Properties, J. Energy. Chem, 22(5): 761-768 (2013).
[27] Abdullah W.N.W., Bakar W.A.W.A., Ali R., Mokhtar W.N.A.W., Omar M.F., Catalytic Oxidative Desulfurization Technology of Supported Ceria Based Catalyst: Physicochemical and Mechanistic Studies, J. Clean Prod., 162: 1455-1464 (2017).
[28] Wang X., Chen H., Meng F., Gao F., Sun C., Sun L., Wang S., Wang L., Wang Y., CTAB Resulted Direct Synthesis and Properties of Hierarchical ZSM-11/5 Composite Zeolite
in the Absence of Template
, Micropor. Mesopor. Mat, 243: 271-280 (2017).
[29] Lai R., Gavalas G.R., ZSM-5 Membrane Synthesis with Organic-Free Mixtures, Micropor. Mesopor. Mat, 38(2-3): 239-245 (2000).
[30] Majano G., Darwiche A., Mintova S., Valtchev V., Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals, Ind. Eng. Chem. Res, 48(15): 7084-7091 (2009).
[31] Kim S.D., Noh S.H., Seong K.H., Kim W.J., Compositional and Kinetic Study on the Rapid Crystallization of ZSM-5 in the Absence of Organic Template Under Stirring, Micropor. Mesopor. Mat, 72(1-3): 185-192 (2004).
[32] Dey K.P., Ghosh S., Naskar M.K., A Facile Synthesis of ZSM-11 Zeolite Particles Using Rice Husk Ash as Silica Source, Mater. Lett, 87: 87-89 (2012).
[35] Jin C., Li G., Wang X., Wang Y., Zhao L., Sun D., A Titanium Containing Micro/Mesoporous Composite and Its Catalytic Performance in Oxidative Desulfurization, Micropor. Mesopor. Mat, 111(1-3): 236-242 (2008).
[36] Yu Q., Chen J., Zhang Q., Li C., Cui Q., Micron ZSM-11 Microspheres Seed-Assisted Synthesis of Hierarchical Submicron ZSM-11 with Intergrowth Morphology, Mater. Lett, 120: 97-100 (2014).
[38] Li X., Mao Y., Leng K., Ye G., Sun Y., Xu W., Enhancement of Oxidative Desulfurization Performance Over Amorphous Titania by Doping MIL-101 (Cr), Micropor. Mesopor. Mat, 254: 114-120 (2017).
[41] Groen J.C., Jansen J.C., Moulijn J.A., Pérez-Ramírez J., Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication, J. Phys. Chem. B, 108(35): 13062-13065 (2004).
[42] Groen J.C., Peffer L.A., Moulijn J.A., Pérez‐Ramírez J., Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore‐Directing Agent, Chem. Eur. J, 11(17): 4983-4994 (2005).
[43] Gonzalez G., Gomes M.E., Vitale G., Castro G.R., Effect of Al Content on Phase Transitions of Zeolite MEL, Micropor. Mesopor. Mat, 121(1-3): 26-33 (2009).
[44] Shirazi L., Jamshidi E., Ghasemi M ,. The Effect of Si/Al Ratio of ZSM‐5 Zeolite on Its Morphology, Acidity and Crystal Size, Cryst. Res. Technol, 43(12): 1300-1306 (2008).
[46] Chai L., Li H., Zheng X., Wang J., Yang J., Lu J., Yin D., Zhang Y., Pervaporation Separation of Ethanol–Water Mixtures Through B-ZSM-11 Zeolite Membranes on Macroporous Supports, J. Membr. Sci, 491: 168-175 (2015).
[47] Hernández-Maldonado A.J., Yang R.T., Desulfurization of Liquid Fuels by Adsorption via π Complexation with Cu (I)− Y and Ag− Y Zeolites, Ind. Eng. Chem. Res, 42(1): 123-129 (2003).
[49] Shen V., Watanabe K., Bell A., Theoretical Analysis of the Thermodynamics of ZSM-11 Zeolite Synthesis, J. Phys. Chem. B, 101(12): 2207-2212 (1997).
[50] Borry R.W., Kim Y.H., Huffsmith A., Reimer J.A., Iglesia E., Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM5 Catalysts for Nonoxidative Methane Conversion, J. Phys. Chem. B, 103(28): 5787-5796 (1999).
[51] Mannei E., Ayari F., Petitto C., Asedegbega–Nieto E., Guerrero–Ruiz A.R., Delahay G., Mhamdi M., Ghorbel A., Light Hydrocarbons Ammoxidation Into Acetonitrile over Mo–ZSM-5 Catalysts: Effect of Molybdenum Precursor, Micropor. Mesopor. Mat, 241: 246-257 (2017).
[52] Zhu W., Zhu G., Li H., Chao Y., Zhang M., Du D., Wang Q., Zhao Z,. Catalytic Kinetics of Oxidative Desulfurization with Surfactant-Type Polyoxometalate-Based Ionic Liquids, Fuel Process. Technol, 106: 70-76 (2013).