Preparation of MgAl-LDH@PS Core-Shell Nanostructure as an Effective Approach for the Removal of Cr (VI) Pollutant

Document Type : Research Article


Department of Chemistry, Faculty of Science, University of Kurdistan, Kurdistan, I.R. IRAN


Chromium contamination in natural water has posed a significant threat to global health due to its toxicity and carcinogenicity. Adsorption technology is an easy and flexible method for chromium removal with high efficiency. Among these, the synthetic approaches based on nanotechnology due to unique structural characterization and application are of great importance. In this research, polystyrene (PS) nanoparticles were used as polymer support and magnesium-aluminum layered double hydroxide (MgAl-LDH) nanostructures were applied as adsorbent. The PS nanoparticles were synthesized via emulsion polymerization of styrene monomer. The as-prepared PS nanoparticles were used as the polymer support to be covered by the MgAl-LDH nanostructures prepared via a hydrothermal approach. The as-prepared MgAl-LDH@PS core-shell nanostructures are characterized by SEM, TGA, and FT-IR analysis. Batch adsorption of Cr(VI) was carried out to evaluate the adsorption efficiency, isotherm, and kinetic studies of the MgAl-LDH@PS nanostructures. On the basis of Langmuir model, a high maximum Cr(VI) adsorption capacity (Qmax) of 765 mg/g with coefficient correlation (R2) of 0.9951 was achieved in batch Cr(VI) removal study. Furthermore, based on the pseudo-second-order kinetic model, the pseudo-second-order rate of 0.1372 mg/(g min) with R2= 0.9975 was achieved. In addition, the results of the stability, as well as the regeneration of the adsorbent, showed that the MgAl-LDH@PS nanostructures can be considered unique adsorbent.


Main Subjects

[2] Atkinson A.J., Apul O.G., Schneider O., Garcia-Segura S., Westerhoff P, Nanobubble Technologies Offer Opportunities to Improve Water Treatment, Acc Chem. Res., 52: 1196-1205 (2019)
[3] Ding J., Pu L., Wang Y., Wu B., Yu A., Zhang X., Pan B., Zhang Q., Gao G., Adsorption and Reduction of Cr(VI) Together with Cr(III) Sequestration by Polyaniline Confined in Pores of Polystyrene Beads, Environ Sci Technol., 52: 12602-12611 (2018).
[4] Chen L., Song Z., Wang X., Prikhodko S.V., Hu J., Kodambaka S., Richards R., Three-Dimensional Morphology Control During Wet Chemical Synthesis of Porous Chromium Oxide Spheres, ACS Appl Mater Interfaces, 1: 1931-1937 (2009).
[6] Shirzad-Siboni M., Farrokhi M., Darvishi Cheshmeh Soltani R., Khataee A., Tajassosi S., Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin, Ind. Eng. Chem. Res., 53: 1079-1087 (2014).
[7] Musorrafiti M.J., Konek C.T., Hayes P.L., Geiger F.M. Interaction of Chromium(VI) with the α-Aluminum Oxide−Water Interface, J. Phys. Chem C., 112: 2032-2039(2008) .
[8] Nagaraj A., Munusamy M.A., Al-Arfaj A.A., Rajan M., Functional Ionic Liquid-Capped Graphene Quantum Dots for Chromium Removal from Chromium Contaminated Water, JCED., 64: 651-667 (2019)
[9] عبدااشاهی نژاد، سارا؛ برقعی، سید مهدی؛ سیدی، مجتبی؛ حذف کروم شش ظرفیتی توسط نانو ذره های فریت، نشریه شیمی و مهندسی شیمی ایران، (1)34: 29 تا 37 (1394).
[11] عبدی زاده، منا؛ آذری، احمد؛ بهینه‌سازی پارامترهای جذب همزمان کروم (III) و مس (II) از پساب به‌وسیله کیتوزان با استفاده از طراحی آزمایش تاگوچی، نشریه شیمی و مهندسی شیمی ایران، (3)36: 1154تا 134 (1396).
[14] Zhao R., Li X., Sun B., Li Y., Li Y., Yang R., Wang C., Branched Polyethylenimine Grafted Electrospun Polyacrylonitrile Fiber Membrane: A Novel and Effective Adsorbent for Cr(vi) Remediation in Wastewater, J Mater Chem A., 5: 1133-1144 (2017).
[17] Qing H., Zhihua Ch., Bing W., Huimin Zh., Liangti Q., Significant Enhancement of Visible-Light-Driven Hydrogen Evolution by Structure Regulation of Carbon Nitrides, ACS Nano., 12: 5221-5227 (2018).
[20] Purwajanti S., Zhang H., Huang X., Song H., Yang Y., Zhang J., Niu Y.,  Meka A.K., Noonan O., Yu C., Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior, ACS Appl. Mater. Interfaces, 8: 25306-25312 (2016).
[21] .Kumar R., Ansari M.O., Barakat M.A., DBSA Doped Polyaniline/Multi-Walled Carbon Nanotubes Composite for High Efficiency Removal of Cr(VI) from Aqueous Solution, Chem. Eng. J., 228:  748-755 (2013).
[22] Chávez-Guajardo A.E., Medina-Llamas J.C., Maqueira L., Andrade C.A.S., Alves K.G.B., Melo C.P.D., Efficient Removal of Cr(VI) and Cu(II) Ions from Aqueous Media by Use of Polypyrrole/Maghemite and Polyaniline/Maghemite Magnetic Nanocomposites, Chem. Eng. J., 281: 826-836 (2015).
[23] Zhu K., Chen C., Xu H., Gao Y., Tan X., Alsaedi A., Hayat T., Cr(VI) Reduction and Immobilization by Core-Double-Shell Structured Magnetic Polydopamine@Zeolitic Idazolate Frameworks8 Microspheres, ACS Sust. Chem. Eng., 8: 6795-6802 (2017).
[24] Shan D., Deng S., Zhao T., Wang B., Wang Y., Huang J., Yu G., Winglee J., Wiesner M.R., Preparation of Ultrafine Magnetic Biochar and Activated Carbon for Pharmaceutical Adsorption and Subsequent Degradation by Ball Milling, J. Hazard. Mater., 305: 156−163 (2016).
[25] Suriyanon N., Punyapalakul P., Ngamcharussrivichai C., Mechanistic Study of Diclofenac and Carbamazepine Adsorption on Functionalized Silica-Based Porous Materials, Chem. Eng. J., 214: 208−218 (2013).
[26] Kera N.H., Bhaumik M., Pillay K., Ray S.S., Maity A., Selective Removal of Toxic Cr(VI) from Aqueous Solution by Adsorption Combined with Reduction at a Magnetic Nanocomposite Surface, J. Coll. Inter. Sci., 503: 140 214-228 (2017).
[27] Chia-Hsuan L., Hsueh-Liang Ch., Weng-Sing H., Moo-Chin W., Horng-Huey K., Synthesis and Optical Properties of Mg-Al Layered Double Hydroxides Precursor Powders, AIP Advances, 7: 125005-125011 (2017).