Molecular Dynamics Simulation of Diffusion of Hydrogen and Oxygen in Polystyrene

Document Type : Research Article

Author

Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, I.R. IRAN

Abstract

In this research, the diffusion coefficients of hydrogen and oxygen gases and the permeability coefficient of hydrogen gas in polystyrene are studied by using molecular dynamics simulations. The diffusion coefficients of hydrogen and oxygen gases over a wide range of temperatures 300-500 K are calculated from center-of-mass mean-square displacements of gas in polystyrene. The results of this research indicated that the calculated diffusion coefficients are in good agreement with the experimental data and the results of previous simulation studies. Also, the diffusion regime at higher temperatures sets in a shorter time compared to a lower temperature. The results for the temperature dependence of the diffusion coefficient indicate that a linear correlation is valid between ln(D) and 1/T over the whole studied temperature range. We calculated the diffusion activation energy from the temperature dependence of the diffusion coefficient. Also, the calculated permeability coefficients are in better agreement with experiment data compared to previous simulation studies. The radial distribution function in different temperatures between penetrant gas and different parts of the polymer chain indicates that gas molecules are closer to phenyl groups compared to aliphatic groups. Our results show that hydrogen molecules which have smaller sizes compared to oxygen molecules, are closer to the polymer chain but they have weaker interaction with the polymer chain.

Keywords

Main Subjects


[1] Sistani S., Ehsani M.R., Kazemian H., Microwave Assisted Synthesis of Nano Zeolite Seed for Synthesis Membrane and Investigation of its Permeation Properties for H2 Separation, Iran. J. Chem. Chem. Eng.(IJCCE), 29(4): 99-104 (2010).
[2] Marjani A., Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes, Iran. J. Chem. Chem. Eng.(IJCCE), 36(6): 139-149 (2017).
[3] منوچهریان فرد، م.، بیگی، ح.، اندازه­ گیری ضریب نفوذ بنزوئیک اسید در نانوسیال آب ـ گاما آلومینا در دمای ثابت، نشریه شیمی و مهندسی شیمی ایران، 34(3): 31 تا 39 (1394).
[4] قنبری پاکدهی، ش.، پور مظاهری، آ.، توفیقی داریان، ج.، فرخی، ع.، اندازه­ گیری ضریب نفوذ سوخت DMAZ در هوا و تعیین حداقل شعاع انبارداری آن، نشریه شیمی و مهندسی شیمی ایران،33(1): 31 تا 35 (1393).
[5] Zhang H., Hogen-Esch T.E., Boschet F., Margaillian A., Fluorine-19 NMR and Viscometric Studies of a Telechelic Fluorocarbon Derivative of Poly(Ethylene Glycol)SAmerican Chemical Society, Polymer Preprints, Division of Polymer Chemistry. 37: 731-732 (1996). 
[6] Lai Y.C., Willson A.C., Zantos G., Òcontact L., “Kirk-Othmer Encyclopedia of Chemical Technology”, 4th ed., John Wiley & Sons, Inc., New York,192 (1993).
[7] Pan A.C., Jacobson D.,  Yatsenko K.,  Sritharan D.,  Weinreich T.M.,  Shaw D.E., Atomic-Level Characterization of Protein-Protein Association, PNAS, 116(10): 4244-4249(2019).
[8] Müller-Plathe F., Molecular Dynamics Simulation of Gas Transport in Amorphous Polypropylene, J. Chem. Phys., 96(4): 3200-3206 (1992).
[9] Erdtman E., Bohlén M., Ahlström P., Gkourmis T., Berlin M., Andersson T., Bolton K.,  A Molecular-Level Computational Study of the Diffusion and Solubility of Water and Oxygen in Carbonaceous Polyethylene Nanocomposites, J. Polym. Sci. Poly. Phys., 54(5): 589-602 (2016).
[10] Müller-Plathe F., Calculation of the Free Energy for Gas Absorption in Amorphous Polypropylene, Macromolecules, 24(24): 6475–6479 (1991).
[11] Tamai Y., Tanaka H., Nakanishi K., Molecular Simulation of Permeation of Small Penetrants through Membranes. 2. Solubilities, Macromolecules, 28(7): 2544–2554 (1995).
[12] Pricl S, Fermeglia M., Atomistic Molecular Dynamics Simulations of Gas Diffusion and Solubility in Rubbery Amorphous Hydrocarbon Polymers, Chem. Eng. Commun., 190(10): 1267-1292 (2003).
[16] Lim S.Y., Tsotsis T.T., Sahimi M. Molecular Simulation of Diffusion and Sorption of Gases in an Amorphous Polymer, J. Chem. Phys., 119(1): 496-505 (2003).
[17] Mooney D.A., MacElroy J.M.D., The Influence of Intramolecular Chain Dynamics on the Diffusion of Small Penetrants in Semicrystalline Aromatic Polymers, J. Chem. Phys. 110(22): 11087-11094 (1999).
[18] Cuthbert T.R., Wagner N.J., Paulaitis M.E., Molecular Simulation of Glassy Polystyrene:  Size Effects on Gas Solubilities, Macromolecules, 30 (10): 3058–3065 (1997).
[19] Yi Y., Bi P.,  Zhao X., Wang L. Molecular Dynamics Simulation of Diffusion of Hydrogen and Its Isotopic Molecule in Polystyrene, J. Polymer Res. 25(2): 43-48 (2018).
[20] Mozaffari F., Eslami H., Moghadasi J., Molecular Dynamics Simulation of Diffusion and Permeation of Gases in Polystyrene, Polymer, 51(1): 300-307 (2010).
[21] Müller-Plathe F., Permeation of Polymers — A Computational Approach, Acta Polym., 45(4): 259-293 (1994).
[22] Eslami H., Müller-Plathe F., Molecular Dynamics Simulation of Sorption of Gases in Polystyrene, Macromolecules, 40(17): 6413–6421 (2007).
[23] Müller-Plathe F., Local Structure and Dynamics in Solvent-Swollen Polymers, Macromolecules, 29 (13): 4782–4791 (1996).
[24] Müller-Plathe F., Unexpected Diffusion Behavior of gas Molecules in Crystalline Poly(4‐Methyl‐1‐Pentene)J. Chem. Phys., 103(10): 4346-4352 (1995).
[25] Jorgensen W.L., Severance D.L., Aromatic-Aromatic Interactions: Free Energy Profiles for the Benzene Dimer in Water, Chloroform, and Liquid Benzene, J. Am. Chem. Soc., 112(12): 4768–4774 (1990).
[26] Allen M. P., Tildesley D.J., Computer Simulation of Liquids. Oxford: Clarendon Press; (1987).
[27] Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F., DiNola A., Haak J.R., Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 81: 3684-3690 (1984).
[28] Müller-Plathe F., YASP: A Molecular Simulation Package, Comput. Phys. Commun., 78: 77–94 (1993).
[29] Srivastava P., Chapman W. G., Laibinis P. E., Molecular Dynamics Simulation of Oxygen Transport Through n-Alkanethiolate Self-Assembled Monolayers on Gold and Copper, J. Phys. Chem. B, 113(2): 456-464 (2009).
[30] Jain A., Purohit C. S., Verma S., Sankararamakrishnan R., Close Contacts between Carbonyl Oxygen Atoms and Aromatic Centers in Protein Structures: π…π or Lone-Pair…π Interactions? J. Phys. Chem. B, 111( 30): 8680-8683 (2007).
[31] Gung B.W., Zou Y., Xu Z., Amicangelo J.C., Irwin D.G., Ma S., Zhou H.C., Quantitative Study of Interactions between Oxygen Lone Pair and Aromatic Rings: Substituent Effect and the Importance of Closeness of Contact,  J. Org. Chem.  73: 689-693 (2008).
[33] Müller-Plathe F., Laaksonen L., van Gunsteren W.F., Cooperative Effects in the Transport of Small Molecules Through an Amorphous Polymer Matrix, J. Mol. Graph., 11(2): 118–120 (1993).
[34] Crank J., Park G.S. Diffusion in Polymers. Academic Press; London and New York: (1968).
[35] Kucukpinar E., Doruker P., Molecular Simulations of Small Gas Diffusion and Solubility in Copolymers of Styrene, Polymer, 44(12): 3607-3620 (2003).
[36] Barrer R. M., Nature of the Diffusion Process in Rubber, Nature, 140: 106-107(1937).
[37] Gao Y., Baca A.M., Wang B., Ogilby P.R., Activation Barriers for Oxygen Diffusion in Polystyrene and Polycarbonate Glasses: Effects of Low Molecular Weight Additives, Macromolecules, 27(24): 7041-7048 (1994).
[38] Brandrup J., Immergut E. H., Grulke E. A., “Polymer Handbook”, 4th ed. John Wiley & Sons, Inc. (1999).