Anodic Oxidation of N,N-diethyl-p-phenylenediamine in the Presence of Thiobarbituric Acid: Electrochemical Synthesis, Mechanistic Study and DFT Calculations

Document Type : Research Article


1 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

2 Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, I.R. IRAN


Due to the wide range of pharmacological and biological properties of thiobarbiturates, a great effort has been devoted to the synthesis of the thiobarbituric acid derivatives. In this work, the electrochemical oxidation of N,N-diethyl-p-phenylenediamine has been studied in the presence of thiobarbituric acid as the nucleophile in aqueous solutions, using cyclic voltammetry and controlled-potential coulometry. The results indicate that the electrochemically generated diimine participates in a Michael-type addition reaction with thiobarbituric acid and via an ECE mechanism converts to the product. In this work, the new thiobarbituric acid derivative is provided with high yield, without reagents and catalyst at a carbon electrode. Density Functional Theory (DFT) calculations were used to confirm the structure of the product and simulate the HNMR and CNMR spectra.


[1] Daneshvar N., Shirini F., Safarpoor Nikoo Langarudi M., Karimi-Chayjani R., Taurine as a Green Bio-Organic Catalyst for the Preparation of Bio-Active Barbituric and Thiobarbituric Acid Derivatives in Water Media, Bioorg. Chem., 77: 68-73 (2018).
[2] H. G Mautner, H. C. Clemson, “Hypnotics and Sedatives". In: "Medicinal Chemistry”, Part II A. Burger, ed, Wiley-Interscience, New York, 1365-1385 (1970).
[3] Aly A.A., Mourad A.F., Hassan A.A., Mohamed N K.; Ali B.A., El-Sayed M.M., Novel Reaction Products from  Thiobarbituric Acid of Biological Interest, Arch. Pharm., 337: 133-139 (2004).
[4] Novak I., Kovač B., Electronic Structure and Biological Activity: Barbiturates Vs. Thiobarbiturates, Chem. Phys. Lett., 493: 242-244 (2010).
[5] مکثایی، ملیحه؛ شیخ حسینی، عنایت الله، گندله آهن: یک کاتالیست طبیعی و قابل بازیافت برای تهیه دی هیدرو پیریمیدین ها در محیط آبی، نشریه شیمی و مهندسی شیمی ایران، (1)36: 83 تا 93 (1396).
[6] Dundee J.W., “Thiopentone and Other Thiobarbiturates”, Edinburgh and London, E. & S. Livingstone LTD (1956).
[7] Sharma S., Dhir A., Pradeep C.P., ESIPT Induced AIEE Active Material for Recognition of 2-Thiobarbituric Acid, Sens. Actuators B: Chem., 191: 445-449 (2014).
[10] Barakat A., Ali M., Al-Majid A.M., Yousuf S., Choudhary M. I., Khalil R., Ul-Haq Z., Synthesis of Thiobarbituric Acid Derivatives: In Vitro α-Glucosidase Inhibition and Molecular Docking Studies, Bioorg. Chem., 75: 99-105 (2017).
[11] Khan K.M., Rahim F., Khan A., Shabeer M., Hussain S., Rehman W., Taha M., Khan M., Perveen S., Choudhary M.I., Synthesis and Structure-Activity Relationship of Thiobarbituric Acid Derivatives as Potent Inhibitors of Urease, Bioorg. Med. Chem., 22: 4119-4123 (2014).
[12] Balas V.I., Verginadis I.I., Geromichalos G.D., Kourkoumelis N., Male L., Hursthouse M. B., Repana K.H., Yiannaki E., Charalabopoulos K., Bakas T., Hadjikakou S.K., Synthesis, Structural Characterization and Biological Studies of the Triphenyltin(IV) Complex with 2-Thiobarbituric Acid, Eur. J. Med. Chem., 46: 2835-2844 (2011).
[13] El-Zahabi H.S.A., Khalifa M.M.A., Gado Y.M.H., Farrag A.M., Elaasser M.M., Safwat N.A., AbdelRaouf R.R., Arafa R.K., New Thiobarbituric Acid Scaffold-Based Small Molecules: Synthesis, Cytotoxicity, 2D-QSAR, Pharmacophore Modelling and in-Silico ADME Screening, Eur. J. Pharm. Sci.,130: 124-136 (2019).
[14] Kosaka Y., Takahashi T., Mark L.C., Intravenous Thiobarbiturate Anesthesia for Cesarean Section, Anesthesiology, 31: 489-506 (1969).
[15] Laxmi S.V., Reddy Y.T., Kuarm B.S., Reddy P.N., Crooks P.A., Rajitha B., Synthesis and Evaluation of Chromenyl Barbiturates and Thiobarbiturates as Potential Antitubercular Agents, Bioorg. Med. Chem. Lett., 21: 4329-4331(2011).
[16] Sabaa M.W., Mohamed N.A., Khalil K.D., Yassin A.A., Organic Thermal Stabilizers for Rigid Poly(Vinyl Chloride)II. Benzal Thiobarbituric Acid and Some of Its Derivatives, Polym. Degrad. Stabil., 70: 121-133 (2000).
[17] Ghani M.A., Barril C., Bedgood D.R. Jr., Prenzler P.D., Measurement of Antioxidant Activity with the Thiobarbituric Acid Reactive Substances Assay, Food Chem., 230:195-207 (2017).
[18] Hu Z., Zhong Q., Determination of Thiobarbituric Acid Reactive Substances in Microencapsulated Products, Food Chem., 123: 794–799 (2010).
[19] Botsoglou N.A., Fletouris D.J., Papageorgiou G.E., Vassilopoulos V.N., Mantis A.J., Trakatellis A.G., Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples, J. Agric. Food Chem., 42: 1931-1937 (1994).
[20] Ramisetti S.R., Pandey M.K., Lee S.Y., Karelia D., Narayan S., Amin S., Sharma A.K., Design and Synthesis of Novel Thiobarbituric Acid Derivatives Targeting Both Wild-Type and BRAF-Mutated Melanoma Cells, Eur. J. Med. Chem., 143: 1919-1930 (2018).
[21] Rauf A., Shahzad S., Bajda M., Yar M., Ahmed F., Hussain N., Akhtar M.N., Khan A., Jończyk J., Design and Synthesis of New Barbituric- and Thiobarbituric Acid Derivatives as Potent Urease Inhibitors: Structure Activity Relationship and Molecular Modeling Studies, Bioorg. Med. Chem., 23: 6049-6058 (2015).
[22] Nematollahi D., Goodarzi H., Electroorganic Synthesis of New Benzofuro[2,3-d]pyrimidine Derivatives, J. Org. Chem., 67: 5036-5039 (2002).
[27] Maleki A., Nematollahi D., An Efficient Electrochemical Method for the Synthesis of Methylene Blue, Electrochem. Commun., 11: 2261-2264 (2009).
[28] Maleki A., Nematollahi D., Mechanism Diversity in Anodic Oxidation of N,N-Dimethyl-P-Phenylenediamine by Varying pH, J. Electroanal. Chem., 704: 75-79 (2013).
[29] خلیلی، بهزاد؛ ریماز، مهدی؛ ضیایی حلیمه‌جانی، عظیم، معرفی گل قرمز به ­عنوان کاتالیستی کارآمد برای سنتز تک ظرفی کومارین­های استخلاف دار شده در موقعیت 3 و بررسی ترمودینامیک واکنش با استفاده از شیمی محاسباتی، نشریه شیمی و مهندسی شیمی ایران، (1)37: 73 تا 90 (1397).
[30] Saeidian H., Sahandi M., Comprehensive DFT Study on Molecular Structures of Lewisites in Support of the Chemical Weapons Convention. J. Mol. Struct., 1100: 486-496 (2015).
[31] Maleki A., Nematollahi D., Rasouli F., Zeinodini-Meimand A., Electrode Instead of Catalyst and Enzyme. A Greener Protocol for the Synthesis of New 2-Hydroxyacetamide Derivatives Containing a γ-Lactone Ring. Green Chem., 18: 672-675 (2016).
[32] Nematollahi D., Zohdijamil Z., Salehzadeh H., An Efficient Electrochemical Method for the Synthesis of N,N,N',N'-Tetraalkyl-4,4'-Azodianiline. J. Electroanal. Chem., 720-721: 156-161 (2014).
[33] Bard A.J., Faulkner L.R., “Electrochemical Methods: Fundamentals and Applications”, 2nd ed., John Wiley & Sons, Inc., New York, Chapter 12 (2001).