Numerical Investigation of Hydrophilic and Thermal Performance of Annular Elliptical Fin Tubes in Comparison with Annular Circulars

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, I.R. IRAN

2 Department of Mechanical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, I.R. IRAN

Abstract

In this study, heat transfer and pressure drop through the four-row fin tube bundle with annular elliptical fins in a triangular layout were investigated. Five different geometries in three fin densities for four different Reynolds numbers were simulated. For circular fins, results are in good agreement with empirical equations in predicting pressure drop and heat transfer. In this regard, the elliptical fins were also examined. It was found that the Nusselt numbers in horizontal elliptical fins are the least and in vertical are the highest. It was also found that pressure drop in the circular fins is higher than in horizontal or vertical elliptical fins and the vertical elliptical fins in comparison with circular fins with the same vertical diameter, exert less pressure drop. Furthermore, although the heat transfer coefficient in horizontal elliptical fins is slightly less than in circular fins, the pressure drop can be as much as 70%. The performance evaluation criterion shows that the circular fin performance is much lower compared with the elliptical fin. Finally, equations are proposed to predict the pressure drop and heat transfer coefficient for elliptical fins relative to circular fins

Keywords

Main Subjects


[1] Arslanturk C., Simple Correlation Equations for Optimum Design of Annular Fins with Uniform Thickness, Appl. Therm. Eng., 25: 2463-2468 (2005).
[2] طاهونی نسیم؛ میریحیایی سمیرا، جدا فاطمه، فلاحی حمیدرضا، پنجه شاهی محمدحسن؛ طراحی و بهینه سازی مبدل­های گرمایی چند جریانه با در نظر گرفتن نوع پره و تغییر ویژگی­ های فیزیکی سیال، نشریه شیمی و مهندسی شیمی ایران، (2)31: 41 تا54 (1391).
[3] طاهونی نسیم، میریحیایی سمیرا، جدا فاطمه، فلاحی حمیدرضا، پنجه شاهی محمدحسن؛  تحلیل گرمایی و هیدرولیکی مبدل­های گرمایی فشرده صفحه ای با پره­ های موجدار، نشریه شیمی و مهندسی شیمی ایران، (1)34: 77 تا104 (1394).
[4] Jafari Nasr M.R., Analysis of Fouling in HVAC Heat Exchangers by CFD, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 51-60 (2015).
[5] Sheu T.W.H., Tsai S.F., A Comparison Study on Fin Surface in Finned-Tube Heat Exchangers, Int. J. Numer. Meth. Heat Fluid Flow, 9(1): 92-106 (1999).
[6] Romero-Mendez R., Sen M., Yang K.T., McClain R., Effect of Fin Spacing on Convection in a Plate Fin and Tube Heat Exchanger, Int. J. Heat Mass Transfer, 43: 39-51 (2000).
[7] Hu X., Jacobi A.M., Local Heat Transfer Behaviour and its Impact on a Single-Row Annularly Finned Tube Heat Exchanger, ASME Journal of Heat Transfer, 115: 66-74 (1993).
[8] Kuntysh V.B., Stenin N.N., Heat Transfer and Pressure Drop in Cross Flow Through Mixed Inline-Staggered Finned Tube Bundles, Therm. Eng., 40: 126-129 (1993).
[9] Mon M.S., Gross U., Numerical Study of Fin-Spacing Effects in Annular-Finned Tube Heat Exchangers, Int. J. Heat Mass Transfer, 47: 1953-1964 (2004).
[11] Chen H.T, Chiu Y.J., Liu C.S.L., Chang J.R., Numerical and Experimental Study of Natural Convection Heat Transfer Characteristics for Vertical Annular Finned Tube Heat Exchanger, Int. J. Heat Mass Transfer, 109: 378-392 (2017).
[13] Senapati J.R., Dash S.K, Roy S., Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder, Int. J. Heat Mass Transfer, 96: 330-345 (2016).
[14] Kundu B., Das P.K., Performance Analysis and Optimization of Elliptic Fins Circumscribing a Circular Tube, Int. J. Heat Mass Transf., 50: 173-180 (2007).
[15] Nagaranie N, Mayilsamy K., Murugesan A., Experimental Heat Transfer Analysis on Annular Circular and Elliptical Fins, IJEST, 2:  2839-2845 (2010).
[16] Nemati H., Samivand S., Simple Correlation to Evaluate Efficiency of Annular Elliptical Fin Circumscribing Circular Tube, Arab. J. Sci. Eng., 39: 9181-9186 (2014).
[17] Zhukauskas A., Investigation of Heat Transfer in Different Arrangements of Heat Exchanger Surfaces, Teploenergetika, 21: 40-46 (1974).
[18] Jacobi A.M., Shah R.K., Air-Side Flow and Heat Transfer in Compact Heat Exchangers: A Discussion of Enhancement Mechanisms, Heat Transfer Eng., 19: 29-41 (1998).
[19] Abraham J.P., Sparrow E.M., Tong J.C.K., Heat Transfer in All Pipe Flow Regimes: Laminar, Transitional/Intermittent, and Turbulent, Int. J. Heat Mass Transfer, 52: 557-563, (2009).
[20] Abraham J.P., Sparrow E.M., Minkowycz W.J., Internal-Flow Nusselt Numbers for the Low-Reynolds-Number End of the Laminar-to-Turbulent Transition Regime, Int. J. Heat Mass Transfer, 54: 584-588 (2011).
[21] Osley, W.G., ögemüller P.Dr, Ellerby P., Gibbard I., Computational Fluid Dynamics Investigation of Air Cooled Heat Exchangers, Chem. Eng. Trans., 39: 1351-1356 (2014).
[23] Menter F., Esch T., Kubacki, S., "Transition Modeling Based on Local Variables", 5th Int. Symp. on Engineering Turbulence Modeling and Measurements, Mallorca, Spain, (2002).
[24] Verein Deutscher Ingenieure., VDI-Wärmeatlas., Berechnungsblätter für den Wärmeübergang, Aufl. Berlin u.a., Springer, 8, 1997.
[25] Web, R.L., Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design, Int. J. Heat Mass Tran., 24(4): 715-726 (1981).
[26] Usui H., San k., Iwashita K., Isozaki A., Enhancement of Heat Transfer by a Combination of an Internally Grooved Rough Tube and a Twisted Tape., Int. J. Chem. Eng., 26: 97-104 (1986).
[27] Karwa R., Sharma Ch., Karwa N., Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces. J. Sol. Energy, 2013: 9 (Article ID 370823) (2013).