The Atomic Arrangement, Structural and Electronic Properties of Si2BN by Density Functional Theory

Document Type : Research Article

Authors

Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, I.R. IRAN

Abstract

A new class of hexagonal graphene-like lattice with an sp2-bonding configuration consisting of Si, B, and N with covalent bonds in the intralayer and van der Waals bond in the interlayer. In this research, three possible atomic arrangements for the Si2BN in the bulk state have been studied, and then the structural and electronic properties of the most stable crystal structure of Si2BN have been investigated in the framework of density functional theory with different approximations such as PBE, LDA, PBEsol, Vdw, HSE. The calculations have been performed by the Projector Augmented Plane Wave (PAW) method as implemented in the Quantum Espresso (QE) package. The most stable crystal structure of Si2BNhas been indicated by the calculation of the Energy–volume curve, Cohesive Energy, Formation energy, bond length, and enthalpy of different crystal structures of Si2BNfor different pressure. The structure is found to be metallic in bulk and monolayer state caused by the presence of Si atoms. By considering the orbitals of each atom in creating the total density of states, it is obvious that the p orbital of B and Si1 atoms at EF possess the majority of contributions in the valence and conduction bands, respectively. In creating the monolayer structure, the optimal Vacuum for all approximations is considered to be 12Ao. It should be noted that monolayer Si2BNcalculations have also shown metallic properties but the length of the bond has been changed. In creating the bilayer structure, the optimal interlayer separation and interaction energy have been investigated.

Keywords

Main Subjects


[1] Tao L., Cinquanta E., Chiappe D., Grazianetti C., Fanciulli M., Dubey M., Molle M., Akinwande D., Silicene Field-Effect Transistors Operating at Room Temperature, Nature Nanotechnology, 10(3): 227-231 (2015).
[2] Acerce M., Voiry D., Chhowalla M., Metallic 1T Phase MoS2 Nanosheets as Supercapacitor Electrode Materials, Nature Nanotechnology, 10(4): 313-318 (2015).
[3] Sun Y., Gao S., Xie Y., Atomically-Thick Two-Dimensional Crystals: Electronic Structure Regulation and Energy Device Construction, Chemical Society Reviews, 43(2): 530-546 (2014).
[4] Peng X., Peng L., Wu C., Xie Y., Two Dimensional Nanomaterials for Flexible Supercapacitors, Chemical Society Reviews, 43(10): 3303-3323 (2014).
[5] Chen Y., Tan C., Zhang H., Wang L., Two-Dimensional Graphene Analogues for Biomedical Applications, Chemical Society Reviews, 44(9): 2681-2701 (2015).
[6] Tan C., Yu P, Hu Y., Chen J., Huang Y., Cai Y., Luo Z., Li B., Lu Q., Wang L., High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors, Journal of the American Chemical Society, 137(32): 10430-10436 (2015).
[7] Novoselov K., Geim A., Morozov S., Jiang D., Katsnelson M., Grigorieva I., Dubonos S., Firsov A., Two-Dimensional Gas of Massless Dirac Fermions in Graphene, Nature 438(7065): 197-200 (2005).
[8] Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M., Geim A.K., Fine Structure Constant Defines Visual Transparency of Graphene, Science, 320(5881): 1308 (2008).
[9] Ferrari A.C., Bonaccorso F., Fal'Ko V., Novoselov K.S., Roche S., Bøggild P., Borini S., Koppens F.H., Palermo V., Pugno N., Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems, Nanoscale, 7(11): 4598-4810 (2015).
[10] Lin Y., Williams T.V., Connell J.W., Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets, The Journal of Physical Chemistry Letters, 1(1): 277-283 (2009).
[11] Liu A.Y., Wentzcovitch R.M., Cohen M.L., Atomic Arrangement and Electronic Structure of BC2N, Physical Review B, 39(3): 1760 (1989).
[12] Nozaki H., Itoh S., Structural Stability of BC2N, Journal of Physics and Chemistry of Solids, 57(1): 41-49 (1996(.
[13] Lam K.-T, Lu Y., Feng Y.P., Liang G., Stability and Electronic Structure of Two Dimensional C x (BN) y Compound, Applied Physics Letters, 98(2): 022101 (2011).
[14] Sun J., Zhou X.-F., Fan Y.-X., Chen J., Wang H.-T., Guo X., He J., Tian Y., First-Principles Study of Electronic Structure and Optical Properties of Heterodiamond BC2N, Physical Review B, 73(4): 045108 (2006).
[15] Hubble H., Kudryashov I., Solozhenko V., Zinin P., Sharma S., Ming L., Raman Studies of Cubic BC2N, a New Superhard Phase, Journal of Raman Spectroscopy, 35: 822-825 (2004).
[16] Solozhenko V.L., Andrault D., Fiquet G., Mezouar M., Rubie D.C., Synthesis of Superhard Cubic BC2N, Applied Physics Letters, 78(10): 1385-1387 (2001).
[17] Liu L., Zhao Z., Yu T., Zhang S., Lin J., Yang G., Hexagonal BC2N with Remarkably High Hardness, The Journal of Physical Chemistry, C2(12): 6801-6807 (2018).
[18] Andriotis A.N., Richter E., Menon M., Prediction of a New Graphenelike Si2BN Solid, Physical Review B, 93(8): 081413 (2016).
[19] Kresse G., Hafner J, Ab Initio Molecular Dynamics for Liquid Metals, Physical Review B, 47(1): 558 (1993).
[20] Heyd J., Scuseria G.E., Ernzerhof M., Erratum: Hybrid Functionals Based on a Screened Coulomb Potential, The Journal of Chemical Physics, 124(21): 219906 (2006).
[21] Singh D., Gupta S.K., Sonvane Y., Hussain T., Ahuja R., Achieving Ultrahigh Carrier Mobilities and Opening the Band Gap in Two-Dimensional Si2BN, Physical Chemistry Chemical Physics, 20(33): 21716-21723 (2018).
[22] Perdew J.P., Burke K., Ernzerhof M., Generalized Gradient Approximation Madesimple, Physical Review Letters, 77(18): 3865 (1996).
[23] Sandoval E.D, Hajinazar S., Kolmogorov A.N., Stability of Two-Dimensional BN-Si Structures, Physical Review B, 94(9): (2016).
[24] Segall M., Lindan P.J., Probert M.A., Pickard C., Hasnip P., Clark S., Payne M., First-Principles Simulation: Ideas, Illustrations and the CASTEP Code, Journal of Physics: Condensed Matter, 14(11): 2717 (2002).
[25] Yuan S.-J., Zhang H., Cheng X.-L., Tunable Localized Surface Plasmon Resonances in a New Graphene-Like Si2BN’s Nanostructures, Plasmonics: 1-7 (2017).
[26] Singh D., Gupta S.K., Sonvane Y., Ahuja R., High Performance Material for Hydrogen Storage: Graphenelike Si2BN Solid, International Journal of Hydrogen Energy, 42(36): 22942-22952 (2017).
[27] Hussain T., Singh D., Gupta S.K., Karton A., Sonvane Y., Ahuja R., Efficient and Selective Sensing of Nitrogen-Containing Gases by Si2BN Nanosheets Under Pristine and Pre-Oxidized Conditions, Applied Surface Science, 469: 775-780 (2019).
[28] Shukla V., Araujo R.B., Jena N.K., Ahuja R., The Curious Case of Two Dimensional Si2BN: A High-Capacity Battery Anode Material, Nano Energy, 41: 251-260 (2017).
[30] Murnaghan F., The Compressibility of Media Under Extreme Pressures, Proceedings of the National Academy of Sciences, 30(9): 244-247 (1944).
[31] Mahan G.D., "Many-Particle Physics". (Springer Science&Business Media) (2013).
[33] Heyd J., Peralta J.E., Scuseria G.E., Martin R.L., Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerhof Screened Hybrid Functional, The Journal of Chemical Physics, 123(17): 174101 (2005).
[34] Kohn W., Density Functional Theory for Systems of Very Many Atoms, International Journal of Quantum Chemistry, 56(4): 229-232 (1995).
[35] Heyd J., Scuseria G.E., Ernzerhof M., Hybrid Functionals Based on a Screened Coulomb Potential, The Journal of Chemical Physics, 118(18): 8205-8207 (2003).
[36] Klimeš J., Bowler D.R., Michaelides A., van der Waals Density Functionals Applied to Solids, Physical Review B, 83(19): 195131 (2011).
[37] Zhang Y., Yang W., Comment on “Generalized Gradient Approximation Made Simple”, Physical Review Letters, 80(4): 890 (1998).
[38] Lee K., Murray É.D., Kong L., Lundqvist B.I., Langreth D.C., Higher-Accuracy Van Der Waals Density Functional, Physical Review B, 82(8): 081101 (2010).
[39] Murray E.D., Lee K., Langreth D.C., Investigation of Exchange Energy Density Functional Accuracy for Interacting Molecules, Journal of Chemical Theory and Computation, 5(10): 2754-2762 (2009).
[40] Klimeš J., Bowler D.R., Michaelides A., Chemical Accuracy for the Van Der Waals Density Functional, Journal of Physics: Condensed Matter, 22(2): 022201 (2009).
[41] Becke A., On the Large‐Gradient Behavior of the Density Functional Exchange Energy, The Journal of Chemical Physics, 85(12): 7184-7187 (1986).
[42] Onodera T., Morita Y., Nagumo R., Miura R., Suzuki A., Tsuboi H., Hatakeyama N., Endou A., Takaba H., Dassenoy F., A Computational Chemistry Study on Friction of h-MoS2. Part II. Friction Anisotropy, The Journal of Physical Chemistry B, 114(48): 15832-15838 (2010).
[43] Hod O., Graphite and Hexagonal Boron-Nitride Have the Same Interlayer Distance. Why?, Journal of Chemical Theory and Computation, 8(4): 1360-1369 (2012).
[44] Reguzzoni M., Fasolino A., Molinari E., Righi M., Potential Energy Surface for Graphene on Graphene: Ab Initio Derivation, Analytical Description, and Microscopicinterpretation, Physical Review B, 86(24): 245434 (2012).