Investigation of Interaction of Penicillamine Anticancer Drug (Pen) with Armchair Boron Nitride Nanotube

Document Type : Research Article

Authors

Chemistry department, science faculty, Sistan & Baluchestan University, Zahedan, I.R. IRAN

Abstract

Interaction of penicillamine anticancer drug (pen), with armchair boron nitride nanotube (BNNT) [5,5] is studied at the B3LYP/6-31G(d,p) level of theory. For all complexes, D3-correction was carried out for the treatment of intermolecular interactions exactly. Results have shown that the adsorption of Pen molecule on the studied BNNTs surface is a favorable process. Furthermore, we estimated the strengths of the intermolecular bonds of the benchmark systems by energetic, geometric, topological, and molecular orbital descriptors. Some analyses have been made to explore any changes in the binding characteristics of the drug molecule after its attachment to the nanotubes. The maximum negative values of Ead and Had are observed for Drug@BNNT 5, so, it is known as the most stable complex. Furthermore, HOMO–LUMO analysis indicated that the electron density of HOMO is localized on the Pen drug in all benchmark systems, while LUMO is situated on the BNNT. Moreover, it was found that the energy gap between HOMO and LUMO (Eg) is reduced, which emphasizes the intermolecular bond strength. As a consequence, BNNT can act as a drug delivery vehicle for the transportation of Pen as an anticancer drug within the biological systems.

Keywords

Main Subjects


[1] Bhushan B.,“Handbook of Nanotechnology”, Berlin, Springer Verlag (2004).
[2] Khan D.R.,The Use of Nanocarriers for Drug Delivery in Cancer Therapy. Journal of Cancer Science & Therapy, 2(3): 58-62 (2010).
[3] Hughes G.A.,Nanostructure-Mediated Drug Delivery, Nanomedicine  in Cancer, 1: 47-72 ( 2017).
[4] De Villiers M. M., Pornanong A., Glen S. K.,„Nanotechnology in Drug Delivery”, USA: AAPS Press, (2009).
[6] Iijima S.,Helical Microtubules of Graphitic Carbon, Nature, 354: 56-58 (1991).
[7] Chang, C.W., Fennimore, A.M ., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, Deyu., Majumdar, A., Zettl, A, Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes, Phy. Rev. Lett, 97: 085901 (2006).
[8] Zhi C.Y., Bando Y., Tang C.C., Huang Q., Golberg D., Boron Nitride Nanotubes: Functionalization and Composites, Journal of Materials Chemistry, 18: 3900-3908 (2008).
[9] Garel J., Leven I., Zhi C., Nagapriya K.S., Popovitz-Biro R., Golberg D., Bando Y., Hod O., Joselevich E., Ultrahigh Torsional Stiffness and Strength of Boron Nitride Nanotubes, Nano Letters, 12: 6347-6352 (2012).
[11] Khatti Z., Hashemianzadeh S.M., Boron Nitride Nanotube as A Delivery System for Platinum Drugs: Drug Encapsulation and Diffusion Coefficient Prediction, European Journal of Pharmaceutical Sciences, 88: 291-297 (2016).
[12] Kaur J., Singla P., Goel N., Adsorption of Oxazole and Isoxazole on BNNT Surface: A DFT Study, Applied Surface Science, 328: 632-640 (2015).
[15] Soltani A., Sousaraei A., Javan M.B., Eskandari M., Balakheylid H., Electronic and Optical Properties of 5-AVA Functionalized BN Nanoclusters: A DFT Study, New J. Chem, 40: 7018-7026 (2016).
[16] Shayan K., Nowroozi A., Boron Nitride Nanotubes for Delivery of 5-Fluorouracil as Anticancer Drug: A Theoretical Study, Applied Surface Science, 428: 500-513 (2018).
[17] Materials Studio References. DS BIOVIA. Dassault Systèmes BIOVIA. Retrieved 24 January (2017).
[18] Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Peterson G.A., Ayala P.Y., Cui Q., Morokama K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul A. G., Stefanove B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D .J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., P.M. Gill W., Johnson B., Chen W., Wong M.W., Andres J.L., Head-Gordon M., Replogle E.S., Pople J.A., C 02 (or D 01), Gaussian Inc, Pittsburgh. 2003.
[19] Biegler-Konig F., Schonbohm J., Bayles D., AIM2000-A Program to Analyze and Visualize Atoms in Molecules, J. Comp. Chem, 22: 545-559 (2001).
[20] Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F., NBO, Version 3.1 University of Wisconsin, Madison, (1992).
[21] Pearson R.G., Hard and Soft Acids and Bases, Dowden (Hutchison & Ross), Stroudsburg, (2001).
[22] Bader, R.F.W., A Bond Path: A Universal Indicator of Bonded Interactions, J. Phys. Chem. A, 102: 7314-7323 (1998).
[23] Rozas I., Alkorta I., Elguero J., Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors, J. Am. Chem. Soc, 122: 11154-11161 (2000).
[25] Durig J.R., Little T.S., Gounev T.K., Gardner Jr  J.K., Sullivan J.F., Infrared and Raman Spectra, Conformational Stability, Vibrational Assignment, and Ab Initio Calculations of Chloromethyl Isocyanate, J. Mol. Struct, 375: 83-94 (1996).
[26] Ibrahim M., Mahmoud A.A., Computational Notes on the Reactivity of Some Functional Groups, J. Comput. Theor. Nanosci, 6: 1523-1526 (2009).
[29] Parr R.G., Pearson R.G., Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc, 105: 7512-7516 (1983).