Synthesis and Characterization of Amine-Functionalized Manganese Porphyrin Immobilized on Silica-Zirconium Ferrite and Evaluation of Its Catalytic Function in Cyclohexane Oxidation

Document Type : Research Article


Department of Chemistry, Iran University of Science and Technology, Tehran, I.R. IRAN


In this study, we have tried to provide a suitable catalyst for the oxidation of cyclohexane to obtain valuable products such as cyclohexanone and cyclohexanol. The magnetic ZrFe2O4/SiO2-NH-MnTCPP nanocomposite has been introduced as a heterogeneous catalyst for selective oxidation of cyclohexane to cyclohexanol with 100% selectivity and 36% conversion. Two methods have been used for this oxidation, reflux and solvothermal assisted by industrial microwave. The mesoporous ZrFe2O4 with nano cauliflowers structure was synthesized via the solvothermal route and to protect it in chemical media, a layer of SiO2 was deposited on the surface of nanoparticles via the wet method. Then, to modify with manganese tetrakis(4-carboxyphenyl) porphyrin (Mn-TCPP) was immobilized on nanocomposite to prepare ZrFe2O4/SiO2-NH-MnTCPP nanocatalyst. The characterization of all samples was done by Fourier Transform InfraRed (FT-IR) spectroscopy, X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Vibrating Sample Magnetometer (VSM) and nitrogen adsorption and desorption isotherms (BET). The catalytic activity of this magnetic nanocomposite in oxidation of cyclohexane was also evaluated by the GC-Mass instrument. Significant advantages of this catalyst include remarkable activity, separation from the reaction medium by the external magnetic field, adequate heat and reaction stability, reusability up to 5 times, and the selectivity in the oxidation of cyclohexane to cyclohexanol with appropriate productivity.


Main Subjects

[3] Maleki A., Kari T., Aghaei M., Fe3O4.SiO2@TiO2@OSO3H: An Efficient Hierarchical Nanocatalyst for the Organic Quinazolines Syntheses, J. Porous Mate. 24: 1481-1496 (2017).
[4] Ribeiro A.P., Matias I.A., Alegria E.C., Ferraria A.M., Botelho do Rego A.M., Pombeiro A.J., Martins L.M., New Trendy Magnetic C-Scorpionate Iron Catalyst and Its Performance Towards Cyclohexane Oxidation, Catalysts 8(2): 69 (2018).
[5] Alangea R.C., Khirade P.P., Birajdar S.D., Humbe A.V., Jadhav K.M., Structural, Magnetic and Dielectrical Properties of Al–Cr Co-Substituted M-Type Barium Hexaferrite Nanoparticles, J. Mol. Struct., 1106: 460-467 (2016).
[6] Gangwar A., Alla S., Srivastava M., Meena S., Prasadrao E., Mandal R., Yusuf S., Prasad N., Structural and Magnetic Characterization of Zr-Substituted Magnetite (ZrxFe3− xO4, 0≤ x≤ 1). J Magn Magn Mater., 401: 559-566 (2016).   
[8] Cheng F., Peng Z., Liao C., Xu Z., Gao S., Yan C., Wang D., Wang J., Chemical Synthesis and Magnetic Study of Nanocrystalline Thin Films of Cobalt Spinel Ferrites, Solid State Commun. 107: 471 (1998).
[10] Rahimi R., Kerdari H., Rabbani M., Shafiee M., Synthesis, Characterization and Adsorbing Properties of Hollow Zn-Fe2O4 Nanospheres on Removal of Congo Red from Aqueous Solution, Desalination 280: 412-418 (2011).
[11] Jiang W., Zhang X., Gong X., Yan F., Zhang Z., Sonochemical Synthesis and Characterization of Magnetic Separable Fe3O4–TiO2 Nanocomposites and their Catalytic Properties, International Journal of Smart and Nano Materials 1: 278-287 (2010).
[12] Yan C.-H., Xu Z.-G., Cheng F.-X., Wang Z.-M., Sun L.-D., Liao C.-S., Jia J.-T., Nanophased CoFe2O4 Prepared by Combustion Method, Solid State Commun. 111: 287 (1999).
[14] Yan A., Liu X., Yi R., Shi R., Zhang N., Qiu G., Selective Synthesis and Properties of Monodisperse Zn Ferrite Hollow Nanospheres and Nanosheets, J. Phys. Chem. C, 112: 8558–8563 (2008).
[15] Nabiyouni G., Ghanbari D., Ghasemi J., Yousofnejad A., Microwave-Assisted Synthesis of MgFe2O4-ZnO Nanocomposite and Its Photo-Catalyst Investigation in Methyl Orange Degradation, J Nanostruct., 5: 289-295 (2015).
[16] Liu F., Niu F., Peng N., Su Y., Yang Y., Synthesis, Characterization, and Application of Fe3O4.SiO2–NH2 Nanoparticles, RSC Advances, 5: 18128-18136 (2015).
[17] Adler A.D., Longo F.R., Finarelli J.D., Goldmacher J., Assour J., Korsakoff L., A Simplified Synthesis for Meso-Tetraphenylporphine, The Journal of Organic Chemistry 32: 476-476 (1967).
[18] Li D., Dong W., Sun S., Shi Z., Feng S., Photocatalytic Degradation of Acid Chrome Blue K with Porphyrin-Sensitized TiO2 under Visible Light, J. Phys. Chem. C, 112: 14878-14882 (2008).
[19] Cai J. H., Huang J., W., Zhao P., Ye Y. J., Yu H. C., Ji L. N., Silica-Metalloporphyrins Hybrid Materials: Preparation and Catalysis to Hydroxylate Cyclohexane with Molecular Oxygen, J. Sol-Gel Sci. Technol., 50: 430–436 (2009).
[22] Sorescu M., Xu T., Wise A., Díaz-Michelena M., McHenry M.E., Studies on Structural, Magnetic and Thermal Properties of xFe2TiO4-(1− x) Fe3O4 (0≤ x≤ 1) Pseudo-Binary System, J Magn Magn Mater, 324: 1453-1462 (2012).
[23] Okoroh D. O., Aisida S. O., Asogwa P. U., Synthesis and Characterization of Biopolymer capped Zinc ferrite Nanoparticles by a Thermal Treatment Method, J. Appl. Phys. 10: 52-56 (2018).
[24] Sorescu M., Xu T., Wise A., Díaz-Michelena M., McHenry M.E., Studies on Structural, Magnetic and Thermal Properties of xFe2TiO4-(1− x) Fe3O4 (0≤ x≤ 1) Pseudo-Binary System, J Magn Magn Mater, 324: 1453-1462 (2012).
[29] Tong J., Bo L., Li Z., Lei Z., Xia C., Magnetic CoFe2O4 Nanocrystal: A Novel and Efficient Heterogeneous Catalyst for Aerobic Oxidation of Cyclohexane, J. Mol. Catal. A-Chem, 307: 58-63 (2009).