Tentative Investigation and Semi-Empirical Modeling of Charge Time in Lithium-ion Battery to Control the Charge Process in Different C-Rates

Document Type : Research Article


Institute of Mechanics, Iranian Space Research Center, Shiraz, I.R. IRAN


One of the main challenges in the development of electric vehicles is their long charge time. Therefore, shortening the charge time of a lithium-ion battery (LIB) is a critical issue in this field. The charging process of the LIB is carried out by a constant current-constant voltage charger. The fast charge may affect the performance of LIB and accelerate its degradation. Herein a model is presented which can predict the charge time of LIB accurately in different C-rates so that the coefficient of determination is more than 0.99 in the modeling of five various LIBs. This indicates very good conformity between the experimental results and predictions of the proposed model. Since the constant voltage step in the charging process of the LIB continues as long as the current reduces to a certain value, if the current of this step is not detected correctly, an overcharge will occur. In the case of a perturbation in the LIB system, the current may not drop with a logical procedure, which can lead to an overcharge and capacity loss of LIB. Therefore, it is possible to limit the charge time in both constant current and constant voltage steps by accurate estimation of LIB charge time. This method can prevent further deterioration of LIB during fast charging.


Main Subjects

[1] Kim D.-R., Kang J.-W., Eom T.-H., Kim J.-M., Lee J., Won C.-Y., An Adaptive Rapid Charging Method for Lithium-Ion Batteries with Compensating Cell Degradation Behavior, Applied Sciences, 8(8): 1251 (2018).
[2] Sarshar M., Zarei-Jelyani M., Babaiee M., Application of Semi Empirical and Multiphysics Models in Simulating Lithium Ion Battery Operation, in “The 10th International Chemical Engineering Congress and Exhibition” (2018).
[3] Sadeghi B., Sarraf-Mamoory R., Shahverdi H. R., The Effect of LiFePO4 Coating on Electrochemical Performance of LiMn2O4 Cathode Material, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 31(4): 29-33 (2012).
[4] کریمی پ.، سنچولی م.، مطالعه قابلیت نانوساختارهای بر پایه گرافن به عنوان باتری‌های یون سدیم، نشریه شیمی و مهندسی شیمی ایران، (4)38: 23 تا 30 (1398).
[5] معلی ع.، نوعی م.، خضعلی ف.، مالکی ا.، اثر میدان الکتریکی بر عملکرد باتری یون سدیم بر مبنای آند بور-نیترید با استفاده از نظریه تابع چگالی، نشریه شیمی و مهندسی شیمی ایران، (3)40: 121 تا 128 (1400).
[6] علیزاده ر.، عابدینی س.، نبی بیدهندی غ.ر.، عموعابدینی ق.، حذف فلز سرب از پساب صنایع باتری‌سازی با استفاده از نانوذرات مغناطیسی آهن، نشریه شیمی و مهندسی شیمی ایران، (1)30: 71 تا 77 (1390).
[8] زارعی جلیانی م.، بکتاشیان ش.، بابایی م.، قاسمی ع.، اقرء ر.، بررسی الکتروشیمیایی تشکیل لایه SEI در فرایند فرماسیون آند گرافیت طبیعی در باتری لیتیوم-یون، مجله مواد پیشرفته و پوشش‌های نوین، (26)7: 1825 تا 1832 (1397).
[9] Loghavi M.M., Askari M., Babaiee M., Ghasemi A., Improvement of the Cyclability of Li-Ion Battery Cathode using a Chemical-Modified Current CollectorJournal of Electroanalytical Chemistry841: 107-110 (2019).
[10] Dehghan F., Mohammadi-Manesh H., Loghavi M.M., Investigation of Lithium-Ion Diffusion in LiCoPO 4 Cathode Material by Molecular Dynamics SimulationJournal of Structural Chemistry60(5): 727-735 (2019).
[11] Zarei-Jelyani M., Baktashian S., Babaiee M., Eqra R., Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode using Water-Based Binders in Lithium-Ion BatteriesJournal of Renewable Energy and Environment5(4): 34-39 (2018).
[12] زارعی جلیانی م.، سرشار م.، بابایی م.، قاسمی ع.، مطالعه آزمایشگاهی و تدوین مدل تجربی افت ظرفیت باتری لیتیوم یون فضایی، مجله مدل­ سازی در مهندسی، (55)16: 35 تا 40، (1397).
[13] Zaghib K., Dontigny M., Guerfi A., Charest P., Rodrigues I., Mauger A., Julien C.M., Safe and Fast-Charging Li-Ion Battery with Long Shelf Life for Power Applications, Journal of Power Sources, 196(8): 3949-3954 (2011).
[14] Ernst C.-S., Hackbarth A., Madlener R., Lunz B., Sauer D. U., Eckstein L., Battery Sizing for Serial Plug-in Hybrid Electric Vehicles: a Model-based Economic Analysis for Germany, Energy Policy, 39(10): 5871-5882 (2011).
[15] Liu Y.-H., Teng J.-H., Lin Y.-C., Search for an Optimal Rapid Charging Pattern for Lithium-Ion Batteries using Ant Colony System Algorithm, IEEE Transactions on Industrial Electronics, 52(5): 1328-1336 (2005).
[16] Purushothaman B., Landau U., Rapid Charging of Lithium-Ion Batteries using Pulsed Currents a Theoretical Analysis, Journal of The Electrochemical Society, 153(3): 533-542 (2006).
[17] Vetter J., Novák P., Wagner M.R., Veit C., Möller K.C., Besenhard J.O., Winter M., Wohlfahrt-Mehrens M., Vogler C., Hammouche A., Ageing Mechanisms in Lithium-Ion Batteries, Journal of Power Sources, 147(1-2): 269-281 (2005).
[18] Zarei-Jelyani M., Sarshar M., Babaiee M., Tashakor N., Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation using Genetic AlgorithmJournal of Renewable Energy and Environment5(3): 60-63 (2018).
[19] Mousavi Safavi S. M., Kiani M. A., Supercapacitive Performance of Ordered Mesoporous Carbon (CMK-3) in Neutral Aqueous ElectrolyteIranian Journal of Chemistry and Chemical Engineering (IJCCE)37(2): 103-109 (2018).
[20] Ouyang D., Chen M., Huang Q., Weng J., Wang Z., Wang J., A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures, Applied Sciences9(12): 2483 (2019).
[21] Zhao J., Rao Z., Huo Y., Liu X., Li Y., Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric VehiclesApplied thermal engineering85: 33-43 (2015).
[22] Wang Q., Sun J., Chen X., Chu G., Chen C., Effects of Solvents and Salt on the Thermal Stability of Charged LiCoO2Materials Research Bulletin44(3): 543-548 (2009).
[23] Lin C.H., Chen C.L., Lee Y.H., Wang S.J., Hsieh C.Y., Huang H.W., Chen K.H., Fast Charging Technique for Li-Ion Battery Charger, in 15th IEEE International Conference on Electronics, Circuits and Systems, 618-621 (2008).