Fabrication of Heat Exchanger in Thermoacoustic Motor by Thin Layers of Fully Aligned Array Carbon Nanotubes

Document Type : Research Article


Malek Ashtar University of Technology, Air Sea University Complex, I.R. IRAN


A silicon substrate was developed for use in thermoacoustic motors as heat exchangers. Acetylene gas (C2H2) as a carbon source of argon gas (Ar) as a carrier gas for hydrogen gas (H2) is used to recover nanoparticles and iron nanoparticles as a catalytic source for carbon nanotube array growth. The reaction was carried out in a 48 cm long quartz tube and the gases were injected with a specified flow rate. Increasing the growth time from 10 to 30 min, there was little change in the diameter distribution and density of the synthesized carbon nanotube arrays. However, the thickness of the arrays increased from 15.62 to 16.76 μm. Carbon nanotubes grown at 30 min had better growth. The thicknesses (lengths) of the carbon nanotube arrays synthesized at temperatures of 750 and 800 °C were 75.42 and 60.98 μm, respectively. In general, the samples synthesized at optimum growth time and temperature of 30 min and 750 °C on the layered silicon substrate (with iron nanoparticles) by magnetic sputtering were quite desirable for use as a thermocouple converter.


Main Subjects

[1] Rott N., Thermoacoustics, Adv. Appl. Mech., 20: 135-175 (1980).
[2] Shaikh S., Li L., Lafdi K., Huie J., Thermal Conductivity of an Aligned Carbon Nanotube Array, Carbon, 45(13): 2608-2613 (2007).
[3] Gerasimenko A.Y., Kitsyuk E.P., Kuksin A.V., Ryazanov R.M., Savitskiy A.I., Savelyev M.S., Pavlov A.A., Influence of Laser Structuring and Barium Nitrate Treatment on Morphology and Electrophysical Characteristics of Vertically Aligned Carbon Nanotube Arrays, Diamond and Related Materials, 96: 104-111 (2019).
[4] Jiang K., Li Q., Fan S., Nanotechnology: Spinning Continuous Carbon Nanotube Yarns, Nature, 419: 801- 809 (2002).
[5] Guaglianoni W.C., Florence C.L., Bonatto F., Venturini J., Arcaro S., Alves A.K., Bergmann C.P., Novel Nanoarchitectured Cobalt-Doped TiO2 and Carbon Nanotube Arrays: Synthesis and Photocurrent Performance, Ceramics International, 45: 2439-2445 (2019).
[6] Zhang X.B., Jiang K.L., Teng C., Liu P., Zhang L., Kong J., Zhang T.H., Li Q.Q., Fan S.S., Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays, Advanced Materials, 18: 1505-1510 (2006).
[8] Zhang M., Atkinson K.R., Baughman R.H., Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology, Science, 306: 1358-1361 (2004).
[9] Ajayan P.M., Nanotubes from carbon, Chemical Review, 99: 1787-1799 (1999).
[10] Szabo A., Perri C., Csato A., Giordano G., Vuono D., Nagy J.B., Synthesis Methods of Carbon Nanotubes and Related Materials, Materials, 3: 3092-3140 (2010).
[11] Sahithi R., Harshit B., Mansi K., Ganesh B., A Review on Synthesis of CNTs and its Application in Conductive Paints, International Advanced Research Journal in Science Engineering and Technology, 2: 50-55 (2015).
[12] Stoffel A., Kovács A., Kronast W., Müller B., LPCVD Against PECVD for Micromechanical Applications, J. Micromech. Microeng, 6: 20-33 (1996).
[13] اسعدی ث.، مردانی ر.، وحدانی م.ر.، تأثیر آهنگ شارش منبع کربنی بر کیفیت رشد نانولوله‌های کربنی آرایه‌ای به طور کامل هم راستا به روش نشست شیمیایی بخار، دومین کنفرانس بین المللی دستاوردهای نوین در علوم و مهندسی شیمی و نفت، شیراز، ایران، 30 مردادماه (1398).
[14] Liu K., Sun Y., Chen L., Feng C., Feng X., Jiang K., Zhao Y., Fan S., Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets with Tunable Physical Properties, Nano Letters, 8: 700-705 (2007).
[15] Tavasoli A., Irani M., Nakhaeipour A., Mortazavi Y., Khodadadi A.A., Dalai A.K., Preparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon Nanotubes,
Iran. J. Chem. Chem. Eng. (IJCCE), 28(1): 37-48 (2009).