Adsorption Removal of BTEX from Aqueous Solution by MOF-199

Document Type : Research Article

Authors

1 Department of Nanotechnology and Advanced Materials, Institute of Materials and Energy (MERC), Karaj, I.R. IRAN

2 Department of Energy, Institute of Materials and Energy (Merc), Karaj, I.R. IRAN

Abstract

Effective removal of pollutants from industrial effluents in order to restore these waters to the cycle, and also from the environmental point of view is very important.  BTEX is an indicator of Volatile Organic Compounds (VOCs).  In this study, the BTEX adsorption method was applied to the MOF-199 nano-absorbent. the MOF-199 was initially synthesized by hydrothermal method and characterized by XRD, FE-SEM, and BET analyses. Adsorption test was performed under NPT conditions and HPLC technique was used for analysis, which confirmed the experimental results of absorption. The equilibrium adsorption isotherms were plotted at 298 ° K. According to the results, the BTEX adsorption isotherm with MOF-199 can be detected with Langmuir isotherm as well as Freundlich isotherm. by comparing the values of the maximum adsorption capacity (qmax) of compounds, the amount of MOF-199 adsorption capacity for benzene and xylene was 108.695 (mg/g), and for ethylbenzene and toluene, 107.526 and 83.333 (mg/g) was obtained, respectively.

Keywords

Main Subjects


[2] Ji G., Sun T., Sui X., Toxicity Effect of Substituted Benzenes in Oilfield Wastewater by Molecular Orbital MethodThe Journal of Applied Ecology, 4: 471-475 (2002).
[3] Tang W.Z., “Physicochemical Treatment of Hazardous Wastes”., CRC Press (2016).
[4] Chuang K.T., Cheng S., Tong S., Removal and Destruction of Benzene, Toluene, and Xylene from Wastewater by Air Stripping and Catalytic Oxidation. Industrial & Engineering Chemistry Research 31(11): 2466-2472 (1992).
[5] Kujawski W., Warszawski A., Ratajczak W., Porebski T., Capała W., Ostrowska I., "Removal of Phenol from Wastewater by Different Separation Techniques.Desalination, 163(1-3): 287-296 (2004).      
 [6] Nickelsen M.G., Cooper W.J., Kurucz C.N., Waite T.D., Removal of Benzene and Selected Alkyl-Substituted Benzenes from Aqueous Solution Utilizing Continuous High-Energy Electron Irradiation. Environmental Science & Technology, 26(1): 144-152 (1992).
[7] مثمری ح.، علایی ا.، شوندی م.، دستغیب س.م.م.، تشرفی س.، پاک سازی آب زیرزمینی آلوده به بنزن به روش فنتون اصلاح شده. ، نشریه شیمی و مهندسی شیمی ایران، (2)37: 149 تا 159 (1397).
[8] Konggidinata M.I., Chao B., Lian Q., Subramaniam R., Zappi M., Gang D.D., Equilibrium, Kinetic and Thermodynamic Studies for Adsorption of BTEX onto Ordered Mesoporous Carbon (OMC). Journal of Hazardous Materials, 336: 249-259 (2017).    
[9] Agrios A.G., Pichat P., Recombination Rate of Photogenerated Charges Versus Surface Area: Opposing Effects of TiO2 Sintering Temperature on Photocatalytic Removal of Phenol, Anisole, and Pyridine in WaterJournal of Photochemistry and Photobiology A: Chemistry, 180(1-2): 130-135 (2006).          
[10] Zhou W., Wöll C., Heinke L., Liquid-and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks. Materials, 8(6): 3767-3775 (2015).
[11] Liu H., Liu B., Lin L.-C., Chen G., Wu Y., Wang J., Gao X., Lv Y., Pan Y., Zhang X., Zhang X., Yang L., Sun C., Smit B., Wang W.,  A Hybrid Absorption–Adsorption Method to Efficiently Capture Carbon. Nature Communications, 5: 5147 (2014).
[12] Khan, N.A., Hasan Z., Jhung S.H., Adsorptive Removal of Hazardous Materials using Metal-Organic Frameworks (MOFs): A Review. Journal of Hazardous Materials244: 444-456 (2013).
[13] Hendon C.H., Walsh A., Chemical Principles Underpinning the Performance of the Metal–Organic Framework HKUST-1. Chemical Science, 6(7): 3674-3683 (2015).
[14] Lin, K.-Y.A., Hsieh Y.-T., Copper-based Metal Organic Framework (MOF), HKUST-1, as an Efficient Adsorbent to Remove P-Nitrophenol from Water. Journal of the Taiwan Institute of Chemical Engineers, 50: 223-228 (2015).
[15] Feng Y., Jiang H., Li S., Wang J., Jing X., Wang Y., Chen M., Metal–Organic Frameworks HKUST-1 for Liquid-Phase Adsorption of Uranium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431: 87-92 (2013).
[17] Nguyen, L.T.L., Nguyen T.T., Nguyen K.D., Phan N.T.S., Metal–Organic Framework MOF-199 as an Efficient Heterogeneous Catalyst for the Aza-Michael Reaction. Applied Catalysis A: General425-426: 44-52 (2012).
[18] Mao Y., Shi L., Huang H., Cao W., Li J., Sun L., Jin X., Peng X., Room Temperature Synthesis of Free-Standing HKUST-1 Membranes from Copper Hydroxide Nanostrands for Gas SeparationChemical Communications, 49(50): 5666-5668 (2013).
[20] Bany-Aiesh H., Banat R., Al-Sou'od K., Kinetics and Adsorption Isotherm of Ibuprofen onto Grafted [Beta]-CD/Chitosan PolymerAmerican Journal of Applied Sciences, 12(12): 917-930 (2015).
[21] Lin S.H., Huang C.Y., Adsorption of BTEX from Aqueous Solution by Macroreticular ResinsJournal of Hazardous Materials, 70(1-2): 21-37 (1999).
[22] Lu C., Su F., Hu S., Surface Modification of Carbon Nanotubes for Enhancing BTEX Adsorption from Aqueous SolutionsApplied Surface Science, 254(21): 7035-7041 (2008).
[23] Jaycock M.J., Parfitt G.D., “Chemistry of Interfaces”, Onichester Ellis Horwood Ltd, (1981).
[24] Mahmoodi N.M., Nickel Ferrite Nanoparticle: Synthesis, Modification by Surfactant and Dye Removal Ability. Water, Air, & Soil Pollution224(2): 1419 (2013).
[25] Mason J.A., Veenstra M., Long J.R., Evaluating Metal–Organic Frameworks for Natural Gas StorageChemical Science, 5(1): 32-51 (2014).