Degradation Study of Methylene Blue from Aqueous Solutions using Perlite@CoO@ Reduced Graphene Oxide Nanocomposite

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, I.R. IRAN

Abstract

In this research, the nanocomposite of perlite@CoO@reduced graphene oxide (PC-RGO) was successfully synthesized fabricated, and characterized by XRD, FT-IR, and SEM images. Diffuse Reflectance Spectroscopy (DRS) was used to find the photocatalytic ability of this nanocomposite. In addition, photocatalytic degradation of hazardous compounds (methylene blue) by the prepared nanocomposite under LED irradiation was reported. The effects of pH, contact time, dye and adsorbent concentration and temperature are all taken into consideration. The adsorption kinetics results are adjusted to best fit the pseudo-second-order model. The experimental data are analyzed by Langmuir isotherms. The best results found in the adsorption experiments were pH 11, 10 ppm methylene blue, 0.1 gr adsorbent, and 60 minutes of contact time. The results of experiments show that as-prepared nanocomposite can be applied as a low-cost, accessible photocatalyst and adsorbent for the removal of organic pollutants from water.

Keywords

Main Subjects


[1] Pekdemir T., Keskinler B., Yildiz E., Akay G., Process Intensification in Wastewater Treatment: Ferrous Iron Removal by a Sustainable Membrane Bioreactor System, J. Chem. Technol. Biotechnol, 78(7): 773-780 (2003).
[2] صباغی، ص.، دوراقی، ف.، تخریب فتوکاتالیستی متیلن بلو به کمک نانوکامپوزیت 2ZnO/SnO، نشریه شیمی و مهندسی شیمی ایران، (2)36: 141 تا 149(1396).
[3] Nassar M.M., El-Geundi M.S., Comparative Cost of Color Removal from Textile Effluents using Natural Adsorbents, J. Chem. Technol. Biotechnol, 50(2): 257-264 (1991).
[5] Ali S.A., Yaagoob I.Y., Mazumder M.A.J., Al-Muallem H.A., Fast Removal of Methylene Blue and Hg(II) from Aqueous Solution using a Novel Super-Adsorbent Containing Residues of Glycine and Maleic Acid, J. Hazard. Mater, 369: 642-654 (2019).
[6] Rida K., Bouraoui S., Hadnine S., Adsorption of Methylene Blue from Aqueous Solution by Kaolin and Zeolite, Appl. Clay Sci, 83-84: 99-105 (2013).
[7] Hoc Thang N., Sy Khang D., Duy Hai T., Thi Nga D., Dinh Tuan P., Methylene Blue Adsorption Mechanism of Activated Carbon Synthesised from Cashew Nut Shells, RSC Adv. 11: 26563-26570 (2021).
[8] Uddin M.T., Islam M.A., Mahmud S., Rukanuzzaman M., Adsorptive Removal of Methylene Blue by Tea Waste, J. Hazard. Mater, 164: 53-60 (2009).
[9] Zhang W., Zhou C., Zhou W., Lei A., Zhang Q., Wan Q., Zou B., Fast and Considerable Adsorption of Methylene Blue Dye onto Graphene Oxide, Bull Environ Contam Toxicol, 87: 86-90 (2011).
[10] Almeida C.A.P., Debacher N.A., Downs A.J., Cottet L., Mello C.A.D., Removal of Methylene Blue from Colored Effluents by Adsorption on Montmorillonite Clay, J. Colloid Interface Sci., 332: 46-53 (2009).
[12] Koe W.S., Lee J.W., Chong W.C., Pang Y.L., Sim L.C., An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane, Environ. Sci. Pollut. Res., 27: 2522-2565 (2020).
[14] Tang L., Cai Y., Yang G., Liu Y., Zeng G., Zhou Y., Li S., Wang J., Zhang S., Fang Y., He Y., Cobalt Nanoparticles-Embedded Magnetic Ordered Mesoporous Carbon for Highly Effective Adsorption of Rhodamine B, Appl. Surf. Sci., 314: 746-753 (2014).
[16] Khan M.J., Husain Q., Ansari S.A., Polyaniline-Assisted Silver Nanoparticles: A Novel Support for the Immobilization of α-Amylase, Appl. Microbiol. Biotechnol., 97: 1513-1522 (2013).
[18] Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater. Lett., 22: 3906-3924 (2010).
[19] Namasivayam C., Prabha D., Kumutha M., Removal of Direct Red and Acid Brilliant Blue by Adsorption on to Banana Pith, Bioresour. Technol., 64(1): 77-79 (1998).
[20] Rashad AM., A Synopsis about Perlite as Building Material – A Best Practice Guide for Civil Engineer, Construction and Building Materials, 121: 338-53 (2016).
[21] Yilmazer S., Ozdeniz M.B., The Effect of Moisture Content on Sound Absorption of Expanded Perlite Plates, Build. Environ., 40(3): 311-318 (2005).
[22] Sengul O., Azizi S., Karaosmanoglu F., Tasdemir M.A., Effect of Expanded Perlite on the Mechanical Properties and Thermal Conductivity of Lightweight Concrete, Energ. Buildings., 43(2): 671-676 (2011).
[23] Huang Z., Zeng X., Li K., Gao S., Wang Q., Lu J., Z-Scheme NiTiO3/g-C3N4 Heterojunctions with Enhanced Photoelectrochemical and Photocatalytic Performances under Visible LED Light Irradiation, ACS Appl. Mater. Interfaces., 9: 41120-41125 (2017).
[25] انصاری ر.، محمودی ن.، استوار ف.، سنتز و کاربرد نانوذرات منگنز دی اکسید برای حذف مالاشیت سبز از آب: مطالعات ایزوترم، ترمودینامیک و سنتیکی، نشریه شیمی و مهندسی شیمی ایران، (1)38: 17 تا 28 (1396).
[26] Sultan M., Javeed A., Uroos M., Imran M., Jubeen F., Nouren S., Saleem N., Bibi I., Masood R., Ahmed W., Linear and Crosslinked Polyurethanes based Catalysts for Reduction of Methylene Blue, J. Hazard. Mater., 344: 210-219 (2018).
[27] آل یاسین س.ا.، خوش گفتار م.، مختاری م.، مختارانی ن.، یوسف زاده ع.، بررسی مقایسه‌ای کارآیی جذب رنگ Methylene Blue  با استفاده از گرانول مرجان آهکی و گرانول لیکا از فاضلاب مصنوعی، مجله دانش و تندرستی، (2)12: 32 تا 41 (1396).
[28] Baharlouei A., Jalilnejad E., Sirousazar M., Investigation of the Adsorption Efficiency of Methylene Blue on Iranian Luffa Cylindrica: Effects of Temperature and pH, Appl. Chem., 12: 193-212 (2017).