Investigation of Electrochemical and Antioxidant Properties of Some Painkiller Drugs (Acetaminophen, Meloxicam, Tenoxicam, and Promethazine) by Computational and Cyclovoltammetry Methods

Document Type : Research Article


1 Department of Chemistry, Ayatollah Boroujerdi University, Boroujerd, I.R. IRAN

2 مرکز تحقیقات آزمایشگاهی غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران


Nonsteroidal anti-inflammatory drugs are the most commonly used drugs for the treatment of articular, bone, and muscle ailments. The most famous of them are acetaminophen, meloxicam, tenoxicam, promethazine andex. These drugs have approximately the same effects, though there are slight differences, which make some of them more suitable for some patients. In recent years, electrochemical methods have become more prominent due to advances in analytical fields due to their sensitivity, low cost, and relatively short analysis time compared to other methods. In this work, using computational chemistry, which generally solves chemistry problems using mathematical and theoretical principles, the structure of acetaminophen, meloxicam, tenoxicam, and promethazine drugs was optimized using Gaussian 09 software, and the solvation-free energy was calculated. Then the half-wave potential was obtained using physical chemistry relationships, it converts to a half-wave potential. Then, by using a cyclic voltammetry device, the half-wave potential of these drugs was practically obtained and compared with the theoretical values, and the antioxidant properties of these drugs were investigated. The half-wave potential for acetaminophen in the experimental method is 195 mV and in the computational method, 213 mV for meloxicam in the experimental method of 395 mV and in the computational method is 339 mV, for tenoxicam in the experimental method of 355 mV and in the computational method 305 mV, for promethazine in the experimental method 465 mV and in the computational method 423 mV. The more negative the half-wave potential, the more anti-oxidant property. Promethazine has the most antioxidant properties among the drugs studied.


Main Subjects

[1] Whiting P.F., Wolff R., Deshpande S., Cannabinoids for Medical Use: A Systematic Review and Meta-Analysis, Journal of the American Medical Association, 313(24): 2456-2473 (2015).
[2] Jensen B., Chen J., Furnish T., Medical Marijuana and Chronic Pain: A Review of Basic Science and Clinical Evidence, Current Pain and Headache Reports, 19(10): 3-9 (2015).
[3] Viswanathan A.N., Feskanich D., Schernhammer E.S., Hankinson S., Aspirin, NSAID, and Acetaminophen Use and the Risk of Endometrial Cancer, Cancer Research, 68(7): 2507-2513 (2008).
[4] Frank E., “Paracetamol: A Curriculum Resource”, Royal Society of Chemistry, Cambridge (2002).
[5] Yalkowsky S.H., He P., Jain Y., "CRC Press Boca Raton", (2010).
[6] Singh G., Lanes S., Risk of Serious Upper Gastrointestinal and Cardiovascular Thromboembolic Complications with Meloxicam, The American Journal Medicine, 117(2): 100-106 (2004).
[7] Osol A., "Remington Pharmaceutical Sciences", Mack Publishing Company, Easton (1980).
[8] Engelhardt G., Homma D., Schlegel K., Utzmann R., Schnitzler C., Anti-inflammatory, Analgesic, Antipyretic and Related Properties of Meloxicam, A New Non-steroidal Anti-inflammatory Agent with Favourable Gastrointestinal Tolerance, Utzmann, Inflammation Research, 44(10): 423-433 (1995).
[9] Callan J.E., Kostic M.A., Bachrach E.A., Prochlorperazine vs. Promethazine for Headache Treatment in the Emergency Department: A Randomized Controlled Trial, Journal Emergency Medicine, 35(3): 247-253 (2008).
[10] Jameh-Bozorghi S., Darvishpour M., Mostghima S., Javansh Z., Solvent Effect on the Redox Potentials of Tetraethyl Ammonium Hexacyanomanganate(III): A Computational Study, International Journal of Electrochemical Science, 32(10): 855-863 (2011).
[11] Jameh Bozorgi S., Javanshir Z., Namdari A.R., Ab Initio and DFT Study of Prototropic nd Metallotropic 1,5-Shift of Isolobal Cyclopentadienyle Derivatives, Journal of the Iranian Chemical Research, 112(4): 743-749 (2017).
[12] Fekri M.H., Omrani A., Jamehbozorgi S., Razavi Mehr M., Study of Electrochemical and Electronical Properties on the some Schiff Base Ni Complexes in DMSO Solvent by Computational Methods, Advanced Journal of Chemistry-Section A, 2(1): 14-20 (2019).
[14] Assadi M.H.N., Theoretical Study on Copper's Energetics and Magnetism in TiO2 Polymorphs, Journal of Applied Physics, 23: 233-913 (2013).
[15] Michelini M.C., Pis Diez R., Jubert A.H., A Density Functional Study of  Small Nickel Clusters, International Journal of Quantum Chemistry, 4: 6-9 (1998).
[16] Ghalkhani M., Salehi M., Beheshtian J., DFT Studies of Functionalized Carbon Nanotubes as Nanoadsorbent of a Benzimidazole Fungicide Compound, Journal of Mathematical Nanoscience, 8(1): 13–18 (2018).
[17] Faulkner L.R., Understanding Electrochemistry: Some Distinctive Concepts, Journal of Chemical Education, 60(4): 262 (1983).
[18] R. Kosuke, “Electrochemistry in Nonaqueous Solutions”, 2nd ed. Wiley-VCH, Weinheim, (2009).
[19] Sirivibulkovit K., Nouanthavong S., Sameenoi Y., Paper-based DPPH Assay for Antioxidant Activity Analysis, Analytical Sciences, 34(7): 795-800 (2018).
[20] Joseph A., Price C., Sanny G., Shevlin D., Application of Manual Assessment of Oxygen Radical Absorbent Capacity (ORAC) for use in High throughput Assay of ‘‘Total’’ Antioxidant Activity of Drugs and Natural Products, Journal of Pharmacological and Toxicological Methods, 54: 56 – 61 (2006).
[21] Naydenova E., Wesselinova D., Staykova S., Goshev I., Vezenkov L., Synthesis, Cytotoxicity and Antioxidant Activity of New Analogs of RC-121 Synthetic Derivatives of Somatostatin, Anticancer Agents Medicine Chemistry, 18: 1417-1424 (2018).
[22] Chevion S., Roberts M.A., Chevion M., The Use of Cyclic Voltammetry for the Evaluation of Antioxidant Capacity, Free Radical Biology and Medicine, 28: 860-870 (2000).
[23] Sochor J., Dobes J., Krystofova O., Ruttkay-Nedecky B., Babula P., Pohanka M., Jurikova T., Zitka O., Adam V., Klejdus B., Kizek R., Electrochemistry as a Tool for Studying Antioxidant Properties, International Journal of Electrochemical Science, 8: 8464 – 8489 (2013).
[24] Brcanovi J.M., Pavlovi A.N., Miti S.S., Stojanovi G.S., Manojlovi D.D., Kalianin B.M., Veljkovi J.N., Cyclic Voltammetric Determination of Antioxidant Capacity of Cocoa Powder, Dark Chocolate and Milk Chocolate Samples: Correlation with Spectrophotometric Assays and Individual Phenolic Compounds, Food Technology Biotechnology, 51(4): 460–470 (2013).
[26] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Dapprich O., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., “Gaussian 09 Revision D.01”, Gaussian, Inc., Wallingford CT. (2013).
[27] Becke A.D., Density Functional Thermochemistry. III. The Role of Exact Exchange, The Journal of Chemical Physics, 98: 5648-5652 (1993).
[28] Yanai T., Tew D.P., Handy N.C.A., A New Hybrid Exchange-Correlation Functional using the Coulomb-Attenuating Method (CAM-B3LYP), Chemical Physics Letters, 393: 51-57 (2004).
[29] Tomasi J., Mennucci B.,  Quantum Mechanical Continuum Solvation Models, Chemical Reviews, 105: 2999-3093 (2005).
[30] Riahi S., Eynollahi S., Ganjali M.R., Norouzi P., Theoretical and Experimental Studies on some Anticancer Derivatives:  Electrochemical investigation, International Journal of Electrochemical Science, 6: 254-255 (2011).
[31] Ghaempanah A., Jameh-Bozorghi S., Darvishpour M., Fekri M.H., Electrochemical Calculations of some Non-Steroidal Anti-Inflammatory Drugs: Solvent Effect and Antioxidant Activity, International Journal of Electrochemical Science, 7: 6127-6133 (2012).
[32] Tsopelas F., Ochsenkühn-Petropoulou M., Zikos N., Spyropoulou E., Andreadou I., Tsantili-Kakoulidou A., Electrochemical Study of Some Non-Steroidal Anti-Inflammatory Drugs: Solvent Effect and Antioxidant Activity, Journal of Solid State Electrochem, 15: 1099–1108 (2011).
[33] Fernandez C., Heger R., Kizek, Thippeswamy R., Pharmaceutical Electrochemistry: The Electrochemical Oxidation of  Paracetamol and Its Voltammetric Sensing in Biological Samples Based on Screen Printed Graphene Electrodes, International Journal of Electrochemical Science, 10: 7440-7452 (2015).
[34] Honarmand E., Motaghedifard M.H., Hadi M., Mostaanzadeh H., Electro-Oxidation Study of Promethazine Hydrochloride at the Surface of Modified Gold Electrode Using Molecular Self Assembly of a Novel Bis-Thio Schiff base from Ethanol Media, Journal of Molecular Liquids, 216: 429–439 (2016).