Mechanistic Investigation of the Gallium-Catalyzed Hydrogenation Reaction of Alkenes; A DFT Study

Document Type : Research Article

Authors

Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

Abstract

In this study, the possible pathways for the catalytic reaction of hydrogenation of alkenes using GaCl3.H2O catalyst in dichloromethane solvent with the presence of 1 and 4-cyclohexadiene were computationally performed using Density Functional Theory (DFT). The best way to undertake this reaction is to use an organic molecule as a hydride donor in the presence of a metal catalyst instead of working with hazardous hydrogen gas. The most commonly used metal in the field is platinum, whose high price has led scientists to look for a suitable replacement. The 13th group complexes, including gallium, can be good substitutes for platinum to catalyze this reaction. In this regard, three possible pathways were considered: two ways without the interference of the water molecule, including the catalyst binding to the hydride-donor species and the other one through the alkene binding to the catalyst, and the last pathway through the water molecule interference. All calculations have been conducted using Gaussian 2009 software and various computational methods and also, considering the solvent effects in accordance with the practical research that led to the elucidation of the mechanism of hydrogenation of alkenes.

Keywords

Main Subjects


[1] Abdellah L., Boutevin B., Youssef B., Synthesis and Applications of Photocrosslinkable Poly (Siloxanes), Progress in organic coatings, 23(3): 201-236 (1994).
[2] Egorova K.S., Ananikov V.P., Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts, Angewandte Chemie International Edition, 55(40): 12150-12162 (2016).
[4] طائب ع.، تخت روانچی م.، ولی پور س.، کمیلی س.، ارزیابی کارایی مدل سینتیکی گودینز در پیش بینی غیرفعال شدن کاتالیست هیدروژن‌دار کردن انتخابی استیلن، نشریه شیمی و مهندسی شیمی ایران، (1)35: 83 تا 89 (1395).
[5] Johnstone R.A., Wilby A.H., Entwistle I.D., Heterogeneous Catalytic Transfer Hydrogenation and its Relation to other Methods for Reduction of Organic Compounds, Chemical Reviews, 85(2): 129-170 (1985).
[6] Dunn N.L., Ha M., Radosevich A.T., Main Group Redox Catalysis: Reversible PIII/PV Redox Cycling at a Phosphorus Platform, Journal of the American Chemical Society, 134(28): 11330-11333 (2012).
[7] Pascual S., Bour C., De Mendoza P., Echavarren A.M., Synthesis of Fluoranthenes by Hydroarylation of Alkynes Catalyzed by Gold (I) or Gallium Trichloride, Beilstein Journal of Organic Chemistry, 7(1): 1520-1525 (2011).
[8] Michelet B., Bour C., Gandon V., Gallium‐Assisted Transfer Hydrogenation of Alkenes. Chemistry–A European Journal, 20(44): 14488-14492 (2014).
[9] Kanno O., Kuriyama W., Wang Z.J., Toste F.D., Regio‐and Enantioselective Hydroamination of Dienes by Gold (I)/Menthol Cooperative Catalysis, Angewandte Chemie International Edition, 50(42): 9919-9922 (2011).
[11] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A.Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, (2009).
[12] Becke A.D., A New Mixing of Hartree–Fock and Local Density‐Functional Theories, The Journal of Chemical Physics, 98: 1372-1377 (1993).
[13] Wadt W.R., Hay P.J., Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi, The Journal of Chemical Physics, 82(1): 284-298 (1985).
[14] Hay P.J., Wadt W.R., Ab initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals, The Journal of Chemical Physics, 82(1): 299-310 (1985).
[15] Binning R.C., Curtiss L.A., Compact Contracted Basis Sets for Third‐Row Atoms: Ga–Kr, Journal of Computational Chemistry, 11(10): 1206-1216 (1990).
[16] Fukui K., The Path of Chemical Reactions-the IRC Approach, Accounts of Chemical Research, 14: 363-368 (1981).
[17] Grimme S., Antony J., Ehrlich S., Krieg H., A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, The Journal of Chemical Physics, 132: 154104-154106 (2010).
[18] Weigend F., Furche F., Ahlrichs R., Gaussian Basis Sets of Quadruple Zeta Valence Quality for Atoms H–Kr, The Journal of Chemical Physics119(24): 12753-12762 (2003).  
[20] Grimme S., Antony J., Ehrlich S., Krieg H., A consistent and accurate ab initio parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-PuThe Journal of chemical physics132(15): 154104 (2010).