Effect of Cu/Zn Ratio on the Morphology and Photocatalytic Activity of Cu2O/ZnO Nanocomposite Nanopowder

Document Type : Research Article


School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN


In this study, nanostructured Cu2O powder was produced by the mechanical milling of micron-size Cu2O powder, and then a Cu2O/ZnO nanocomposite powder with different ratios of Cu/Zn was prepared by a chemical method. The effect of various Cu/Zn ratios of 5, 10, and 20 on the structure, morphology, optical properties, and photocatalytic performance in the degradation of methylene blue pollutant solution by composite nanopowder was investigated. The results of X-ray diffraction showed that the final product has a crystalline structure with relatively broadened peaks, which indicates a fined structure. The scanning electron microscope images showed that in the nanocomposite with the Cu/Zn ratio of 5, ZnO covered almost the entire surface of the Cu2O particles. The optical properties of nanocomposites were studied by diffuse reflection spectroscopy and the minimum band gap energy was related to the nanocomposite with Cu/Zn ratio of 5, 1.9 eV, and this was in the visible light range. This sample showed the maximum photocatalytic activity in the degradation of the pollutant under visible light and exhibits 98% degradation of neutral aqueous solution methylene blue at a concentration of 2 mg/L after 240 minutes of irradiation under visible light.


Main Subjects

[1] Royer B., Cardoso N.F., Lima E.C., Vaghetti J.C.P., Simon N.M., Calvete T., Veses R.C., Applications of Brazilian-Pine Fruit Shell in Natural and Carbonized Forms as Adsorbents to Removal of Methylene Blue from Aqueous Solutions-Kinetic and Equilibrium Study, J. Hazard. Mater., 164: 1213-1222 (2009).
[2] Rafatullah M., Sulaiman O., Hashim R., Ahmad A., Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review, J. Hazard. Mater., 177: 70-78 (2010).
[3] Netpradit S., Thiravetyan P., Towprayoon S., Application of Waste Metal Hydroxide Sludge for Adsorption of Azo Reactive Dyes, Water Res., 37: 763-772 (2003).
[4] Allegre C., Moulin P., Maisseu M., Charbit F., Treatment and Reuse of Reactive Dyeing Effluents, J. Membrane Sci., 269: 15-34 (2006).
[5] Ahmadi M., Padervand M., Vosoughi M., Roosta Azad R., Facile Template-Free Synthesis of the CuO Microflowers with Enhanced Photocatalytic Properties, Mater. Res. Innov., 21: 1-5 (2016).
[6] مقدم س.، ظرافت م.م.، صباغی ص.، تجزیه فوتوکاتالیستی فنول با استفاده از نانوکامپوزیت C-TiO2، نشریه شیمی و مهندسی شیمی ایران، (1)37: 41 تا 50 (1397).
[7] شافعی ع.ر.، شیبانی س.، تأثیر حضور آب، بنزیل الکل و درصد CNT بر روی ویژگی‌های نانوکامپوزیت TiO2-CNT تولید شده به روش سل-ژل درجا، مجله فرایندهای نوین در مهندسی مواد، 2: 149 تا 160 (1397).
[8] Padervand M., Fasandouz F.M., Beheshti A., [Cu-Ag2]O-C3N4 Nanoframeworks for Efficient Photodegradation of Wastewaters, Prog. React. Kinet. Mec., 44: 175-186 (2019).
[9] Heidarpour H., Padervand M., Soltanieh M., Vossoughi M., Enhanced Decolorization of Rhodamine B Solution through Simultaneous Photocatalysis and Persulfate Activation over Fe/C3N4 Photocatalyst, Chem. Eng. Res. Des., 153: 709-720 (2020).
[10] صباغی ص.، دوراقی ف.، تخریب فوتوکاتالیستی متیلن بلو به کمک نانوکامپوزیت ZnO/SnO2، نشریه شیمی و مهندسی شیمی ایران، (2)36: 141 تا 149 (1396).
[12] Padervand M., Lammel G., Bargahi A., Mohammad-Shiri H., Photochemical Degradation of the Environmental Pollutants over the Worm-Like Nd2CuO4-Nd2O3 Nanostructures, Nano-Structures & Nano-Objects, 18: 100258 (2019).
[13] Padervand M., Jalilian E., Majdani R., Goshadezehn M., BiOCl/AgCl-BiOI/AgI Quaternary Nanocomposite for the Efficient Photodegradation of Organic Wastewaters and Pathogenic Bacteria under Visible Light, J. Water Process Eng., 29: 100789 (2019).
[14] Kumar S., Parlett C.M.A., Isaacs M.A., Jowett D.V., Douthwaite R.E., Cockett M.C.R., Lee A.F., Facile Synthesis of Hierarchical Cu2O Nanocubes as Visible Light Photocatalysts, Appl. Catal. B., 189: 226-232 (2016).
[15] He Z., Xia Y., Tang B., Jiang X., Su J., Fabrication and Photocatalytic Property of ZnO/Cu2O Core-Shell Nanocomposites, Mat. Let., 184: 48-151 (2016).
[16] Li W., Wang G., Chen C., Liao J., Li Z., Enhanced Visible Light Photocatalytic Activity of ZnO Nanowires Doped with Mn2+ and Co2+ Ions, Nanomat., 7: 20-24 (2017).
[17] Deo M., Shinde D., Yengantiwar A., Jog J., Hannoyer B., Sauvage X., More M., Ogale S., Cu2O/ZnO Hetero-Nanobrush: Hierarchical Assembly, Field Emission and Photocatalytic Properties, Mat. Chem., 22: 17055-17062 (2012).
[18] Lučić Lavčević M., Penava A., ZnO Nanostructured Photocatalysts for Water Treatment Application, Croatian J. Food Sci. Tech., 9: 192-197 (2017).
[19] Jang J.S., Yu C.J., Choi S.H., Ji S.M., Kim E.S., Lee J.S., Topotactic Synthesis of Mesoporous ZnS and ZnO Nanoplates and their Photocatalytic Activity, Catal., 254: 144-155 (2008).
[20] Jiang T., Xie T., Zhang Y., Chen L., Peng L., Wang D., Photoinduced Charge Transfer in ZnO/Cu2O Heterostructure Films Studied by Surface Photovoltage Technique, Phys. Chem. Chem. Phys., 12: 15476-15481 (2010).
[21] Yang M., Zhu L., Li Y., Cao L., Guo Y., Asymmetric Interface Band Alignments of Cu2O/ZnO and ZnO/Cu2O Heterojunctions, J. Alloys Compd., 578: 143-147 (2013).
[22] Chen Y.S., Liao C.H., Chueh Y.L., Lai C.C., Chen L.Y., Chu A.K., Kuo C.T., Wang H.C., High Performance Cu2O/ZnO Core-Shell Nanorod Arrays Synthesized using a Nanoimprint GaN Template by the Hydrothermal Growth Technique, Opt. Mater. Express, 4: 1473-1486 (2014).
[23] Lv J., Xu J., Zhao M., Yan P., Mao S., Shang F., He G., Zhang M., Sun Z., Effect of Seed Layer on Optical Properties and Visible Photoresponse of ZnO/Cu2O Composite Thin Films, Ceram. Int., 41: 13983-13987 (2015).
[24] عطائی ا.، شیبانی س.، خیاطی غ.ر.، اسدی کوهنجانی س.،"آلیاژسازی و فعال‏ سازی مکانیکی، فناوری تهیه نانو مواد"، سازمان انتشارات جهاد دانشگاهی واحد تهران، (1385).
[25] Cullity B.D., "Elements of X-ray Diffraction", Reading: Addison-Wesley Pub., (1978).
[26] Williamson G., Hall W., X-ray Line Broadening from filed Aluminium and Wolfram, Acta Metall., 1: 22-31 (1953).
[27] Tauc J., Optical Properties and Electronic Structure of Amorphous Ge and Si, Mater. Res. Bull., 3: 37-46 (1968).
[28] Esmaielzadeh Kandjani A., Mohammad Sabri Y., Periasamy S.R., Zohora N., Amin M.H., Nafady A., Bhargava S. K., Controlling Core/Shell Formation of Nano-Cubic p-Cu2O/n-ZnO Toward Enhanced Photocatalytic Performance, Langmuir, 31: 10922-10930 (2015).
[29] Zou X., Fan H., Tian Y., Yan S., Synthesis of Cu2O/ZnO Hetero-Nanorod Arrays with Enhanced Visible Light-Driven Photocatalytic Activity, Cryst. Eng. Comm., 16: 1149-1156 (2014).
[30] Ma J., Wang K., Li L., Zhang T., Kong Y., Komarneni S., Visible-Light Photocatalytic Decolorization of Orange II on Cu2O/ZnO Nanocomposites, Ceram. Int., 41: 2050-2056 (2015).
[31] Helaıli N., Bessekhouad Y., Bouguelia A., Trari M., p-Cu2O/n-ZnO Heterojunction Applied to Visible Light Orange II Degradation, Sol. Energy, 84: 1187-1192 (2010).
[32] Xu C., Cao L., Su G., Liu W., Liu H., Yu Y., Qu X., Preparation of ZnO/Cu2O Compound Photocatalyst and Application in Treating Organic Dyes, J. Hazard. Mater., 176: 807-813 (2010).
[33] Cui Y., Wang C., Liu G., Yang H., Wu S., Wang T., Fabrication and Photocatalytic Property of ZnO Nanorod Arrays on Cu2O Thin Film, Mat. Let., 65: 2284-2286 (2011).
[34] Liu K., Zhang J., Gao H., Xie T., Wang D., Photocatalytic Property of ZnO Microrods Modified by Cu2O Nanocrystals, J. Alloys Compd., 552: 299-303 (2013).
[35] Ansari F., Sheibani S., Fernández-García M., Characterization and Performance of Cu2O Nanostructures on Cu Wire Photocatalyst Synthesized In-Situ by Chemical and Thermal Oxidation, J. Mat. Sci.: Mat. Elec., 30: 13675-13689 (2019).