Effective Method for Knoevenagel Condensation Catalyzed by Acetoguanamine Supported on Magnetic Nanoparticles

Document Type : Research Article

Authors

1 Department of Chemistry, Hakim Sabzevari University, Sabzevar, I.R. IRAN

2 Department of Physics, Hakim Sabzevari University, Sabzevar, I.R. IRAN

3 Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, I.R. IRAN

Abstract

A green and effective method for the synthesis of benzylidene malononitrile derivatives via condensation of different aldehyde and malononitrile in the presence of Acetoguanamine supported on CoFe2O4 magnetic nanoparticles coated by silica gel as a new catalyst at room temperature with ethanol and water solvent was reported. The simple separation of products from the reaction mixture, the improvement of product yields, the short reaction time, and the use of solvents that have relatively less environmental pollution, the easy reaction method, the recoverable and reusable catalysts are the advantages of this method. The 6-methyl-1,3,5-triazine-2,4-diamine supported on CoFe2O4 magnetic nanoparticles coated by silica gel could be recycled five times without significant loss of its catalytic activity. All products were characterized by spectral data and by comparison with authentic samples reported in the literature.

Keywords

Main Subjects


[1] Ramesh P, Shalini B, Fadnavis N.W., Knoevenagel Condensation of Diethylmalonate with Aldehydes Catalyzed by Immobilized Bovine Serum Albumin (BSA), RSC Advances, 4(15): 7368-7373 (2014).
[2] Smith M.B., March J., “March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Molecules”. John Wiley & Sons, Inc, (1385)
[3] Xu Q., Niu Y., Wang G., Li Y., Zhao Y., Singh V., Niu J., Wang J., Polyoxoniobates as a Superior Lewis Base Efficiently Catalyzed Knoevenagel Condensation, Molecular Catalysis, 453: 93-99 (2018).
[4] Choudary B.M., Kantam M.L., Neeraja V., Rao K.K., Figueras F., Delmotte L., Layered Double Hydroxide Fluoride: A Novel Solid Base Catalyst for C–C Bond Formation, Green Chemistry, 3(5): 257-260 (2001).
[7] Clemens J.J., Asgian J.L., Busch B.B., Coon T., Ernst J., Kaljevic L., Krenitsky P.J., Neubert T.D., Schweiger E.J., Termin A., Stamos D., Diastereoselective One-Pot Knoevenagel Condensation/Corey–Chaykovsky Cyclopropanation, The Journal of Organic Chemistry, 78(2): 780-785 (2012).
[8] Palao E., Agarrabeitia A.R., Banuelos-Prieto J., Lopez T.A., Lopez-Arbeloa I., Armesto D., Ortiz M.J., 8-Functionalization of Alkyl-substituted-3, 8-dimethyl BODIPYs by Knoevenagel Condensation, Organic Letters. 15(17):4454-4457 (2013).
[11] Mase N., Horibe T., Organocatalytic Knoevenagel Condensations by Means of Carbamic Acid Ammonium Salts, Organic Letters, 15(8):1854-1857 (2013).
[12] Zhang Y., Chen C., Wu G., Guan N., Li L., Zhang J., One-Step Hydrothermal Amino-Grafting of Graphene Oxide as an Efficient Solid Base Catalyst, Chemical Communications, 50(33): 4305-4308 (2014).
[13] List B., Castello C., A Novel Proline-Catalyzed Three-Component Reaction of Ketones, Aldehydes, and Meldrum's Acid, Synlett, 2001(11):1687-1689 (2001).
[14] Ogiwara Y., Takahashi K., Kitazawa T., Sakai N., Indium(III)-Catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter, The Journal of Organic Chemistry, 80(6): 3101-3110 (2015).
[15] Postole G., Chowdhury B., Karmakar B., Pinki K., Banerji J., Auroux A., Knoevenagel Condensation Reaction Over Acid-Base Bifunctional Nanocrystalline CexZr1-xO2 Solid Solutions, Journal of Catalysis, 269(1): 110-121 (2010).
[16] Katkar S.S., Lande M.K., Arbad B.R., Rathod S.B., Indium Modified Mesoporous Zeolite Almcm-41 as a Heterogeneous Catalyst for the Knoevenagel Condensation Reaction, Bulletin of the Korean Chemical Society, 31(5): 1301-1304 (2010).
[17] Modak A., Mondal J., Bhaumik A., Porphyrin Based Porous Organic Polymer as Bi-Functional Catalyst for Selective Oxidation and Knoevenagel Condensation Reactions, Applied Catalysis A: General, 49: 41-51 (2013).
[18] Reddy B.M, Patil M.K. Rao K.N, Reddy G.K., An Easy-To-Use Heterogeneous Promoted Zirconia Catalyst for Knoevenagel Condensation in Liquid Phase under Solvent-Free Conditions, Journal of Molecular Catalysis A: Chemical, 258(2-1): 302-307 (2006).
[20] حجامی مریم، قربانی فرشید، یوسفوند زکیه، سنتز و شناسایی کاتالیزگرهای نانوحفره  MCM-41و  MCM-48 اصلاح شده وکاربرد آن­ها در واکنش­های تراکمی نووناگل در آب ، شیمی کاربردی ، (47)13: 45 تا 60 (1397).
[21] Islam S. K. M., Roy A.S., Dey R.C., Paul S., Graphene-Based Material as a Base Catalyst for Solvent Free Aldol Condensation and Knoevenagel Reaction at Room Temperature, Journal of Molecular Catalysis A: Chemical, 394: 66-73 (2014).
[22] Zhao X.L., Yang K.F., Zhang Y.P., Zhu J.L., Xu W., Sevelamer as an Efficient and Reusable Heterogeneous Catalyst for the Knoevenagel Reaction in Water, Chinese Chemical Letters, 25(8): 1141-1144 (2014)
[23] Rostami A., Atashkar B., Gholami H., Novel Magnetic Nanoparticles Fe3O4-Immobilized domino Knoevenagel Condensation, Michael Addition, and Cyclization Catalyst, Catalysis Communications, 37: 69-74 (2013).
[24] Radi M., Bernardo V., Bechi B., Castagnolo D., Pagano M., Botta M., Microwave-Assisted Organocatalytic Multicomponent Knoevenagel/hetero Diels–Alder Reaction for the Synthesis of 2, 3-dihydropyran [2, 3-c] pyrazoles, Tetrahedron Letters, 50(47): 6572-6575 (2009).
[25] Lai Y.F, Zheng H, Chai S.J, Zhang P.F, Chen X.Z., Lipase-Catalysed Tandem Knoevenagel Condensation and Esterification with Alcohol Cosolvents, Green Chemistry, 12(11): 1917-1918 (2010).
[28] Yu J, Chen X, Jiang M, Wang A, Yang L, Pei X, Zhang P, Wu S.G., Efficient Promiscuous Knoevenagel Condensation Catalyzed by Papain Confined in Cu3(PO4)2 Nanoflowers, RSC Advances, 8(5): 2357-2364 (2018).
[29] Lee A., Michrowska A., Sulzer‐Mosse S., List B., The Catalytic Asymmetric Knoevenagel Condensation, Angewandte Chemie International Edition, 50(7): 1707-1710 (2011).
[30] عبدالشاهی نژاد، سارا؛ برقعی، سیدمهدی؛ سیدی، مجتبی؛ حذف کروم شش ظرفیتی توسط نانو ذره های فریت، نشریه شیمی و مهندسی شیمی ایران، (1)34: 29 تا 37 (1394).
[31] حیدری، فرهود؛ منطقیان، مهرداد؛ سید افقهی، سیدسلمان؛ سنتز نانوذرات کامپوزیتی حاوی نانولوله های کربنی- پلی آنیلین- فریت نیکل و بررسی خواص ساختاری آن، نشریه شیمی و مهندسی شیمی ایران، (2)5: 35 تا 46 (1395).
[32] Muralidhar L, Girija C.R., Simple and Practical Procedure for Knoevenagel Condensation under Solvent-Free Conditions. Journal of Saudi Chemical Society, 18(5):541-4 (2014).
[33] Deb M.L, Bhuyan P.J., Uncatalysed Knoevenagel Condensation in Aqueous Medium at Room Temperature, Tetrahedron Letters, 46(38):6453-6456 (2005).
[34] Liu Q, Ai H, Li Z., Potassium Sorbate as an Efficient and Green Catalyst for Knoevenagel Condensation, Ultrasonics Sonochemistry, 18(2):477-479 (2011).
[36] Abaee M.S., Cheraghi S., Aqueous Dabco, An Efficient Medium for Rapid Organocatalyzed Knoevenagel Condensation and the Gewald Reaction, Turkish Journal of Chemistry, 38(4):650-660 (2014).
[37] Shi D.Q, Chen J, Zuang Q.Y., Wang XS, Hu HW., The Condensation of Aromatic Aldehydes with Acidic Methylene Compounds in Water, Chinese Chemical Letters, 14(12):1242-5 (2003).
[39] Filho J.B.M.R., Pires G.P., Oliveira Ferreira, J.M.G., Teotonio, E.E.S., Vale, J.A., Knoevenagel Condensation of Aldehydes and Ketones with Malononitrile Catalyzed by Amine Compounds-Tethered Fe3O4@SiO2 Nanoparticles, Catalysis Letters, 147(1): 167-180 (2017).