Investigation of the Adsorption of Phosphoric Acid from Aqueous Solution onto Biosorbents

Document Type : Research Article


Department of Chemical Engineering, University of Guilan, Rasht, I.R. IRAN


In this research, the adsorption of phosphoric acid from an aqueous solution was investigated at different temperatures (298, 308, and 318 K) by using different adsorbents such as wheat bran and banana peels, in a batch system. FTIR and SEM analysis were used, in order to determine the functional groups in the structure of adsorbents and the surface characteristics of adsorbents, respectively. In the adsorption experiments, the effect of important parameters such as the effect of contact time, the amount of adsorbent temperature, and initial acid concentration was investigated. Equilibrium time was determined 40 and 50 minutes for wheat barn and banana peels. The highest percentage of adsorption for banana peel and wheat peel was measured at 71% and 59.8% for 1 g /L phosphoric acid, respectively.  The optimum amount of adsorbent was determined 3g. Investigation of the temperature demonstrated that the percentage of removing phosphoric acid decreased by increasing the temperature. Different models of adsorption isotherms such as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were applied to analyze the equilibrium data at different temperatures and Langmuir and Temkin isotherm have the most agreement with experimental data for absorbents. Different kinetic models such as pseudo-first order, pseudo-second order, Elovich, and intra-particle diffusion model were chosen to describe the kinetic of adsorption, and the pseudo-second-order model for wheat barn and Elovich for banana peels have the best agreement with experimental data for each adsorbent. Thermodynamic parameters like standard Gibbs free energy changes of adsorption (ΔG oads), standard enthalpy changes of adsorption (ΔH oads), and standard entropy changes of adsorption (ΔS oads) were calculated by using equilibrium constant values at different temperatures. The negative value of (ΔG oads) demonstrated that adsorption of phosphoric acid by adsorbents is a spontaneity process and negative values of (ΔH oads) showed that adsorption of phosphoric acid on adsorbents is exothermic. The absorption capacity of banana peel and wheat bran was achieved20 and 11 mg/g, respectively. As a result, banana peel was the appropriate absorbent in this work.


Main Subjects

[2] قنادزاده گیلانی ح، جنگجوی شالدهی ط، معصومی ح، بررسی پارامترهای موثر بر استخراج آسکوربیک اسید به کمک نمک‌های سولفات و پلی اتیلن گلیکول در سامانه‌های دوفازی آبی، نشریه شیمی و مهندسی شیمی ایران، (3)39: 163 تا 170 (1399).
[3] قنادزاده گیلانی ح، جنگجوی شالدهی ط، بررسی پارامترهای موثر بر استخراج اسید والریک به کمک سامانه‌های دوفازی آبی، نشریه شیمی و مهندسی شیمی ایران، (3)39: 155 تا 162 (1399).
[4] قنادزاده گیلانی ح، معصومی ح، جنگجوی شالدهی ط، بررسی عامل‌های مؤثر بر سامانه دو فازی دارای پلی اتیلن گلیکول 4000 گرم بر مول و نمک‌های فسفات در استخراج اسید مالیک، نشریه شیمی و مهندسی شیمی ایران، (4)39: 177 تا 185 (1399).
[5] معصومی ح، قنادزاده گیلانی ح، اثر نمک‌های فسفات در استخراج اسید مالیک توسط سامانه دو فازی آبی، نشریه شیمی و مهندسی شیمی ایران، (3)39: 167 تا 175 (1399).
[7] Zumdahl S.S., DeCoste D.J., "Chemical Principles", 6th ed, Houghton Mifflin Company (2009).
[8] Sowmya A., Meenakshi S., Effective Removal of Nitrate and Phosphate Anions from Aqueous Solutions Using Functionalised Chitosan Beads. Desalination and Water Treatment, 52(13-15): 2583-259 (2014).
[9] Pavan F.A., Francisco M.S.P, Landers R., Gushikem Y., Adsorption of Phosphoric Acid on Niobium Oxide Coated Cellulose Fiber: Preparation, Characterization and Ion Exchange Property, Journal of the Brazilian Chemical Society, 16(4): 815-820 (2005).
[10] Karimaian K.A., Amrane A., Kazemian  H., Panahi R., Zarrabi M., Retention of Phosphorous Ions on Natural and Engineered Waste Pumice: Characterization, Equilibrium, Competing Ions, Regeneration, Kinetic, Equilibrium and Thermodynamic Study, Applied Surface Science, 284: 419-431 (2013).
[11] Vu H.H.T., Khan M. D., Chilakala R., Lai T. Q., Thenepalli T., Ahn J. W., Utilization of Lime Mud Waste from Paper Mills for Efficient Phosphorus Removal, Sustainability, 11(6): 1524 (2019).
[12] Moharami S., Jalali M., Removal of Phosphorus from Aqueous Solution by Iranian Natural Adsorbents, Chemical Engineering Journal, 223: 328-339 (2013).
[13] Rouessac F., Rouessac A., "Chemical Analysis: Modern Instrumentation Methods and Techniques", John Wiley & Sons, (2013).
[14] Yang, Z., Wu G., Li Q., Ai H., Yao X., Ji H., Removal of Various Pollutants from Wastewaters Using an Efficient and Degradable Hypercrosslinked Polymer, Separation Science and Technology, 56(5): 860-869 (2019).
[15] Khan T.A., Chaudhry S.A., Ali I., Equilibrium Uptake, Isotherm and Kinetic Studies of Cd (II) Adsorption Onto Iron Oxide Activated Red Mud from Aqueous Solution, Journal of Molecular Liquids, 202: 165-175, 2015.
[16] Amarasinghe B., Williams R.A., Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater, Chemical Engineering Journal, 132(1-3): 299-309 (2007).
[17] Miraboutalebi S.M., Nikouzad S. K., Peydayesh M., Allahgholi N., Vafajoo L., McKay G., Methylene Blue Adsorption via Maize Silk Powder: Kinetic, Equilibrium, Thermodynamic Studies and Residual Error Analysis, Process Safety and Environmental Protection, 106: 191-202 (2017).
[18] Bayazit S.S., İnci I., Uslu H., Adsorption of Glutaric Acid and Glyoxylic Acid onto Weakly Basic Ion-Exchange Resin: Equilibrium and Kinetics, Journal of Chemical & Engineering Data, 55(2): 679-684 (2009).
[19] قنادزاده گیلانی ح.، قنادزاده گیلانی ع.، پریسا آ.، بررسی جذب فنل از محلول‌های آبی با استفاده از کربن هسته انار، نشریه شیمی و مهندسی شیمی ایران، (4)36: 145 تا 159 (1396).
[20] Bohli T., Fiol Santaló N., Villaescusa Gil I., Ouederni A., Adsorption on Activated Carbon from Olive Stones: Kinetics and Equilibrium of Phenol Removal from Aqueous Solution, Journal of Chemical Engineering and Process Technology, 4(6): 165 (2013).
[21] Ho Y.-S., McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochemistry., 34(5): 451-465 (1999).
[22] Hameed B., Rahman A., Removal of Phenol from Aqueous Solutions by Adsorption Onto Activated Carbon Prepared from Biomass Material, Journal of Hazardous Materials, 160(2-3): 576-581 (2008).
[25] Renault F., Morin-Crini N., Gimbert F., Badot P. M., Crini G., Cationized Starch-based Material as a New Ion-Exchanger Adsorbent for the Removal of CI Acid Blue 25 from Aqueous Solutions, Bioresource Technology, 99(16): 7573-7586 (2008).
[26] Sarı A., Tuzen M., Cıtak D., Soylak M., Adsorption Characteristics of Cu (II) and Pb (II) Onto Expanded Perlite from Aqueous Solution, Journal of Hazardous Materials, 148(1-2): 387-394 (2007).
[27] Sepehr M.N., Sivasankar V., Zarrabi M., Kumar M. S., Surface Modification of Pumice Enhancing its Fluoride Adsorption Capacity: An Insight into Kinetic and Thermodynamic Studies, Chemical Engineering Journal, 228: 192-204 (2013).
[29] Bouhamed F., Elouear Z.,  Bouzid J., Adsorptive Removal of Copper (II) from Aqueous Solutions on Activated Carbon Prepared from Tunisian Date Stones: Equilibrium, Kinetics and Thermodynamics, Journal of the Taiwan Institute of Chemical Engineers, 43(5): 741-749 (2012).
[30] Ahmaruzzaman M., Sharma D., Adsorption of Phenols from Wastewater, Journal of Colloid and Interface Science, 287(1): 14-24 (2005).
[31] Miao Q., Tang Y., Xu J., Liu X., Xiao L., Chen Q., Activated Carbon Prepared from Soybean Straw for Phenol Adsorption, Journal of the Taiwan Institute of Chemical Engineers, 44(3): 458-465 (2013).
[32] Jadhav A.J., Srivastava V.C., Adsorbed Solution Theory based Modeling of Binary Adsorption of Nitrobenzene, Aniline and Phenol Onto Granulated Activated Carbon, Chemical Engineering Journal, 229: 450-459 (2013).
[33] Foo K.Y., Hameed B.H., Insights Into the Modeling of Adsorption Isotherm Systems, Chemical Engineering Journal, 156(1): 2-10 (2010).
[34] Tempkin M., Pyzhev V., Kinetics of Ammonia Synthesis on Promoted Iron Catalyst, Acta Phys., 12(1): 327-356 (1940).
[35] Dubinin M.M., Zaverina E., Radushkevich L., Sorption and Structure of Active Carbons. I. Adsorption of Organic Vapors, Zhurnal Fizicheskoi Khimii, 2(3): 151-162 (1947).
[37] Subbaiah M.V., Kim D.-S., Adsorption of Methyl Orange from Aqueous Solution by Aminated Pumpkin Seed Powder: Kinetics, Isotherms, and Thermodynamic Studies, Ecotoxicology and Environmental Safety, 128: 109-117 (2016).
[38] Ilyas, M., A. Ahmad, M. Saeed, Removal of Cr (VI) from Aqueous Solutions using Peanut Shell as Adsorbent, J. Chem. Soc. Pak., 35(3): 760-768 (2013).
[39] Malkoc E., Nuhoglu Y., Fixed Bed Studies for the Sorption of Chromium (VI) Onto Tea Factory Waste, Chemical Engineering Science, 61(13): 4363-4372 (2006).
[40] Torit J., Phihusut D., Phosphorus Removal from Wastewater using Eggshell Ash, Environmental Science and Pollution Research, 26(33): 34101-34109 (2019).