Preparation and Characterization of MnO2/Zeolite-Y Nanoporous and Its Application as an Efficient Catalyst in the Three-Component Synthesis of Ethyl Benzimidazolyl-2-Aminothio Acetate under Green Conditions

Document Type : Research Article


Department of Chemistry, University of Payame Noor, Tehran, I.R. IRAN


In the present study, with the knowledge of the properties and advantages of various nano-porous materials, nanoparticles of manganese oxide (II) were exchanged on the zeolite-Y surface (covalent bond) and its structure was characterized by using various techniques such as FT-IR, XRD, BET, FESEM, and EDX analyses. In the following, the manganese oxide/zeolite (MnO2@zeolite-Y) as a green active nanocatalyst for the synthesis of ethyl 2-((1H-benzo[d]imidazole-2-ylamine)(ariyl)methylthio) acetate were used via a one-pot multicomponent reaction of aryl aldehydes, 2-amino benzimidazole, and ethyl 2-mercaptoacetate in a water-ethanol solvent and room temperature. This catalytic method has many advantages, such as the use of non-toxic, low-cost, available, and recyclable acidic nanocatalyst (Lewis), the short reaction time, the ease of separating pure products, the use of green solvents, and mild conditions. The present method also promises that in the future it can be used as a convenient synthetic route for the preparation of new sulfur-bearing peptide derivatives based on 2-amino benzimidazole core under moderate conditions.


Main Subjects

[1] Sheldon R.A., Downing R.S., Heterogeneous Catalytic Transformations for Environmentally Friendly Production, Applied Catalysis A, 189: 163-183 (1999).
[2] Bournay L., Casanave D., Delfort B., Hillion G., Chodorge J.A., New Heterogeneous Process for Biodiesel Production: A Way to Improve the Quality and the Value of the Crude Glycerin Produced by Biodiesel Plants, Catalysis Today, 106: 190-192 (2005).
[3] رحمانی ن.، باقری گرمارودی ا.، خان محمدی خرمی م.ر.، بهینه‌سازی شرایط سنتز نانو زئولیت ZSM-5 بدون قالب با استفاده از طراحی آزمایش،  نشریه شیمی و مهندسی شیمی ایران،  (3)37:  27 تا 36 (۱۳۹7).
[4] بنی هاشمی س.ف.، احمدپور ع.، پاکیزه م.، پورافشاری چنار م.، سنتز نانوذره‌های سیلیکالیت-1 و بررسی تاثیر تعداد مرحله‌های جوانه‌نشانی روی پایه‌های جوانه‌نشانی شده برای ساخت غشای زئولیتی با کیفیت بالا، نشریه شیمی و مهندسی شیمی ایران، (۱)31: ۱ تا ۱۱ (۱۳۹۱).
[5] Lu A.-H., Salabas E.L., Schuth, F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition, 46: 1222-1244 (2007).
[6] Sun S.H., Murray C.B., Weller D., Folks L., Moser A., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science, 287: 1989-1992 (2000).
[7] Aroon M.A., Ismail A.F., Matsuura T., Montazer-Rahmati M.M., Performance Studies of Mixed Matrix Membranes for Gas Separation, Separation and Purification Technology, 75: 229–242 (2010).
[8] Koohsaryan E., Anbia M., Nanosized and Hierarchical Zeolites, Chinese Journal of Catalysis, 37: 447–467 (2016).
[10] Thomas J.M., Catlow C.R.A., New Light on the Structure of Aluminosilicate Catalysts, Progress in Inorganic Chemistry, 35: 1-49 (1987).
[11] Corma A., Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chemical Reviews, 95: 559-614 (1995).
[12] Ugi I., Dömling A., Hörl W., Multicomponent Reactions in Organic-Chemistry, Endeavour, 18: 115-121 (1994).
[13] Plunkett M., Ellman J.A., Combinatorial Chemistry and New Drugs, Scientific American, 276: 68–73 (1997).
[14] Tietze L.F., Modi A., Multicomponent Domino Reactions for the Synthesis of Biologically Active Natural Products and Drugs, Medicinal Research Reviews, 20: 304–322 (2000).
[15] Weber L., Multicomponent Reactions and Evolutionary Chemistry, Drug Discovery Today, 7: 143–147 (2002).
[17] Wasserscheid P., Welton T., "Ionic Liquids in Synthesis", Wiley-VCH, Weinheim, (2007).
[18] Lin I. J. B. Vasam C. S., Preparation and Application of N-heterocyclic Carbene Complexes of Ag(I), Coordination Chemistry Reviews, 251: 642-670 (2007).
[19] Nolan S.P., N-Heterocyclic Carbenes in Synthesis, Wiley-VCH, Weinheim, (2006).
[20] Joseph J., Suman A., Nagashri K., Joseyphus R. S., Balakrishnan N., Synthesis, Characterization and Biological Studies of Copper (II) Complexes with 2-Aminobenzimidazole Derivatives, Journal of Molecular Structure, 1137: 17-26 (2017).
[21] Rosenberg A.J., Williams T.M., Jordan A.J., Clark D.A., Synthesis of 2-Amino-Imidazo [4, 5-b] Pyridines, Organic & Biomolecular Chemistry, 11: 3064-3072 (2013).
[22] Frei R., Breitbach A.S., Blackwell H.E., 2‐Aminobenzimidazole Derivatives Strongly Inhibit and Disperse Pseudomonas aeruginosa Biofilms, Angewandte Chemie International Edition, 51: 5226-5229 (2012).
[24] Li F., Kang Q., Shan H., Chen L., Xie J., Regioselective N‐Alkylation Of 2‐Aminoimidazoles With Alcohols To 2‐(N‐Alkylamino)Imidazoles Catalyzed by the [Cp*IrCl2]2/K2CO3 System, European Journal of Organic Chemistry, 2012: 5085-5092 (2012).
[25] Cheng C.C., Shipps G.W. Jr., Yang Z., Sun B., Kawahata N., Soucy K. A., Soriano A., Orth, P., Xiao L., Mann P., Black T., Discovery and Optimization of Antibacterial AccC Inhibitors, Bioorganic & Medicinal Chemistry Letters, 19: 6507-6514 (2009).
[26] Yarie M., Zolfigol M.A., Baghery S., Alonso, D.AKhoshnood A., Kalhor M., Bayatd Y., Asgarid A., Design and Preparation of [4,40-Bipyridine]-1,10- Diium Trinitromethanide (BPDTNM)
as a Novel Nanosized Ionic Liquid Catalyst: Application to the Synthesis of 1-(Benzoimidazolylamino)Methyl-2- Naphthols
, New Journal of Chemistry, 41: 4431-4440 (2017).
[27] Mobinikhaledi A., Foroughifar N., Kalhor M., An Efficient One-Pot Synthesis of Novel Ethyl 2-((1H-Benzo[D]Imidazol-2-Ylamino)(Aryl)Methylthio) Cetates using A Ni(NO3)2.6H2O, as a Homogeneous Catalyst, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 39: 509-511 (2009).
[29] Kalhor M., Banibairami S., Mirshokraie S.A., Ni@Zeolite-Y Nanoporous; A Valuable and Efficient Nanocatalyst for the Synthesis of Nbenzimidazole-1,3-Thiazolidinones, Green Chemistry Letters and Reviews, 11: 334–344 (2018).