Investigation of Structural, Electronic and Optical Properties of InN

Document Type : Research Article


Department of Physics, Faculty of Science, University Shahid Chamran University of Ahvaz, Ahvaz, I.R. IRAN


In this study, the structural, electronic, and optical properties of InN in three phases of zinc, vortexite, and NaCl have been studied. The calculations have been performed using the pseudopotential method in the framework of Density Functional Theory (DFT) by Quantum espresso package with LDA, GGA, and PBE0 approximations for the exchange and correlation potential terms. The results show that the band gap for InN in the hexagonal phase is a semiconductor with a direct band gap while it is indirect in the NaCl phase. The mostly contributed in the valence band and in the conduction band of the s-orbital nitrogen atom and orbital s and p indium atoms. The result of the compressibility shows that the structural phase of the NaCl is less dense than the two structural phases. Also, the optical properties of the compound including dielectric function, refractive index, electron energy loss Spectroscopy, and the results are consistent with other available data.


Main Subjects

[1] Lu H., Schaff W.J., Eastman, Surface Chemical Modification of InN for Sensor Application, Applied Physics, 96: 3577-3579 (2004).
[2] Furthmuller J., Bechestedt F., Band Structures and Optical Spectra of In Npolimorphs: Influence of Quasiparticleand Exeitonic Effects, Physical Review, 72: 205106 (2005).
[3] Tansley T.L. Foley C.P., Optical Band Gap of  InN, J. Appl. Phys. 59: 3241 (1986).
[4] Anchez M.S, "Electronic Structure and Optical Properties of III-N Nanowires", University of Valencia (2010).
[5] Kanoun B., A. Merad E., Merad G., Cibert J., Prediction Study of Elastic Properties Under Pressure Effect for Zincblende BN, AlN, GaN and InN, Solid-State Electronics, 48(9): 1601–1606 (2004).
[6] Bechstedt F., Furthmüller J., Hahn P., Fuchs F., Nonparabolicity and Excitions in Optical Absoration of InN, Journal of crystal growth, 288: 294-297 (2006).
[7] Gorcyca I., Electron Structure and Effective Masses of InN Under Pressure, J. App. Phys., 104(1): 013704 (2008).
[8] Lyons J.J., Van de Walle C.G., Hybrid Functional Calculations of Native Point Defects in InN, Physica Status Solidi (a) 209(1): 65-70 (2012).
[9] Hussain A., Baig M.W.,  Mustafa N., DFT Studies of Indium Nanoclusters, Nanotubes and Their Interaction with Molecular Hydrogen, The Nuclecus, 52(4): 185-191 (2015).
[10] Liang D., Quhe R., Chen Y., Wu L., Wang Q., Guan P., Wang S., Lu P., Electronic and Excitonic Properties of Two-Dimensional and Bulk Inn Crystals, RSC Advances, 7: 42455-42461 (2017).
[11] Giovanne B., Pinhal N., Marana L., Guilherme S., Fabris L., Sambrano Structural J.R., Electronic and Mechanical Properties of Single-Walled AlN and GaN Nanotubes via DFT/B3LYP, Theoretical Chemistry Accounts, 138: 1-11 (2019).
[12] Giannozzi P., Baroni S., Bonini N., QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, Condensed Matter, 21: 395502(2009).
[13] Bachelet G.B., Hamann D.R., Shluter M., Pseudopotentials that Work: from H to Pu, Physical Review, 26: 4199 (1982).
[14] Qian Z., Shen W., Ogawa H., Guo Q., Experimental Studies of Lattic Dynamic Properties in Indium Nitride, Condensed Matter, 16: (2004) R381.
[15] جاودانی ز.، "بررسی ویژگی‌های ساختاری و مغناطیسی با استفاده از نظریه تابعی چگالی SrFe2O4 ترکیب مونوفریت استرانسیوم"، پایان‌نامه کارشناسی ارشد، دانشگاه شهید چمران، اهواز، ایران (1391).
[16] Vurgaftman I., Meyer J.R., and Ram-Mohan L.R., Band Parameters for III-V Compound Semiconductors Their Alloys, J. Appl. Phys, 89(11): 5815-5875 (2001).
[17] Bechstedt F., Furthmüller J., Do We Know the Fundamental Energy Gap of InN, Journal of Crystal Growth, 246(3-4): 315-319 (2002).
[18] Graine R., Chemam R., First Principles Calculation of Structural, Electronic and Optical Properties of InN Compound, International Journal of Modern Physics, 29(5): 0217-9792 (2015).
[19] Ji X., Lau S., Yang H., Zhang Q., Structural and Optical Properties of Wurtzite InN Grown on Si (111), Thin Solid Films, 515(11): 4619-4623 (2007).