Synthesis of Some MOF's Such as MIL-100(Fe), V-BTC and Cr-BTC with 1,3,5- benzene Tricarboxylic Acid Ligand and Investigation of Their Catalytic Activities in Esterification of Oleic Acid in Biodiesel Production

Document Type : Research Article


1 Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, I.R. IRAN

2 Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, I.R. IRAN


In this research, various types of MOFs with different metal nodes such as iron, chromium, vanadium, and strontium were synthesized using benzene-1,3,5-tricarboxylic acid as an organic linker through a hydrothermal crystallization method. In continuation, the effect of pH, temperature, and reaction time on the properties of obtained MOFs have been studied. The synthesized nanocrystalline MOFs were systemically characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM),  and Fourier Transform InfraRed (FT-IR) spectroscopy. Therefore, synthesized catalysts were successfully carried out in the esterification reaction of oleic acid with methanol for the production of biodiesel. In addition, the operating conditions such as temperature and time of reaction, the molar ratio of methanol to oleic acid, and the amount of catalyst were studied. It was found among the prepared catalysts MIL-100(Fe) is the most appropriate catalyst for the esterification reaction of oleic acid with a yield of 78.8% upon the optimum operating conditions. The catalytic activity of catalysts decreased in this order: Sr-BTC (52%), Cr-BTC (44%), and V-BTC (42%).


Main Subjects

[1] Rowsell J.L.C., Yaghi O.M., Metal–Organic Frameworks: A New Class of Porous Materials, Microporous Mesoporous Mater, 73(1–2): 3–14 (2004).
[2] Anumah A., Louis H., Zafar S., Hamzat A., Amusan O., Pigweh A., Akakuru O., Adeleye A., Magu T., Metal-Organic Frameworks (MOFs): Recent Advances in Synthetic Methodologies and Some Applications, Chemical Methodologies, 3(3): 276–391 (2019).
[3] Gascon J., Corma A., Kapteijn F., Llabres i Xamena F.X., Metal Organic Framework Catalysis: Quo Vadis, ACS Catal., 4(2): 361–378 (2013).
[4] Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F.,Metal–Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation, Nat. Mater., 14(1): 48 (2015).
[7] Coronado C.R., de Carvalho J.A.Jr, Silveira J.L., Biodiesel CO2 Emissions: A Comparison with the Main Fuels in the Brazilian Market, Fuel Process. Technol., 90(2): 204–211 (2009).
[8] Atabani E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S., A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics, Renew. Sustain. Energy Rev., 16(4): 2070–2093 (2012).
[9] Ma F., Hanna M.A., Biodiesel Production: A Review, Bioresour. Technol., 70(1): 1–15 (1999).
[10] تحویلداری ک.، امانی م.ع.، تولید بیودیزل از روغن گلرنگ و بررسی ویژگی‌های مخلوط 20 درصد آن با سوخت دیزل، نشریه پژوهش‌های کاربردی در شیمی، (4)13: 57 تا 65 (1389).
[11] یزدانی آ.، ادیبی م.، چالش‌های تولید و استفاده بیودیزل به عنوان جایگزینی برای سوخت‌های فسیلی، مجله علمی ترویجی فرایند نو، (10)51: 5 تا 24 (1394).
[13] Pangestu T., et al., The Synthesis of Biodiesel Using Copper Based Metal-Organic Framework as a Catalyst, Journal of Environmental Chemical Engineering, 7(4): 103277 (2019).
[14] Nikseresht A, Daniyali A, Alimohammadi M, Afzalinia A, Mirzaie A., Ultrasound-Assisted Biodiesel Production by A Novel Composite of Fe(III)-based MOF and Phosphotangestic Acid as Efficient and Reusable Catalyst, Ultrasonic Sonochemistry, 37: 203-207 (2017).
[21] Songolzadeh M., Soleimani M., Ravanchi M.T., Evaluation of Metal Type in MIL-100 Structure to Synthesize a Selective Adsorbent for the basic N-Compounds Removal from Liquid Fuels, Microporous Mesoporous Mater.,  274: 54–60 (2019).
[22] Francisco G.-C., Juan B.-M., Combustion Synthesis Process for the Rapid Preparation of High-Purity SrO powders, Mater. Sci., 32(4): 682–687 (2014).
[23] Horcajada P., et al., Synthesis and Catalytic Properties of MIL-100 (Fe), an Iron (III) Carboxylate with Large Pores, Chem. Commun., 27: 2820–2822 (2007).
[24] Noureddini H., Zhu D., Kinetics of Transesterification of Soybean Oil, J. Am. Oil Chem. Soc., 74(11): 1457–1463 (1997).
[25] نجفی ب.، مدل‌سازی سینتک شیمیایی تولید سوخت بیودیزل از روغن پسماند رستوران، نشریه شیمی و مهندسی شیمی ایران، (2)30: 25 تا 33 (1390).
[26] Salamatinia B., Hashemizadeh I., Zuhairi A., Alkaline Earth Metal Oxide Catalysts for Biodiesel Production from Palm Oil: Elucidation of Process Behaviors and Modeling using Response Surface MethodologyIran. Chem. Chem. Eng. (IJCCE), 32(1): 113-126 (2013)
[27] Haq Nawaz B., Hanif M., Faruq U., Sheikh M., Acid and Base Catalyzed Transesterification of Animal Fats to Biodiesel, Iran. Chem. Chem. Eng. (IJCCE), 27(4): 41-48 (2008)
[28] Amusan O., Louis H., Hamzat A., Oluwatobi Omotola A., O. Oyebanji, Alagbe A., Magu T., Synthesis and Characterization of CaO Catalyst Obtained from Achatina Achatina and Its Application in Biodiesel Production, Asian Journal of Nanosciences and Materials., 2(3): 271–277 (219).
[29] Jabbari H., Production of Methyl Ester Biofuel from Sunflower Oil via Transesterification Reaction, Asian Journal of Nanosciences and Materials., 1(2): 52–55 (2018).
[30] Hassan H.M.A., Betiha M.A., Mohamed S.K., El-Sharkawy E.A., Salen-Zr (IV) Complex Grafted into Amine-Tagged MIL-101 (Cr) as a Robust Multifunctional Catalyst for Biodiesel Production and Organic Transformation Reactions, Appl. Surf. Sci., 412: 394–404 (2017)
[32] González M.D., Salagre P., Taboada E., Llorca J., Cesteros Y., Microwave-Assisted Synthesis of Sulfonic Acid-Functionalized Microporous Materials for the Catalytic Etherification of Glycerol with Isobutene, Green Chem., 15(8): 2230–2239 (2013).