Optimization of Tellurium Biosorption by Pseudomonas Putida Using the Response Surface Method (RSM)

Document Type : Research Article


1 Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, I.R. IRAN

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, I.R. IRAN


In this research, the biosorption of tellurium from aqueous solutions by Pseudomonas putida was investigated. One Factor at a Time (OFAT) method was used for the investigation of the pH effect, and Response Surface Method (RSM) based on the Central Composite Design (CCD) was used for the investigation of initial tellurium concentration, biosorbent dosage, and contact time on biosorption. Based on the results, the second-order polynomial regression model with correlation coefficient R2=0.937, by proper prediction of process behavior, determined initial Te concentration 109 mg/l, biosorbent dosage 1.17 g/L, contact time 94 minutes optimized as the optimum point at pH=8.5. The adsorption capacity of the biosorbent was 10.1 mg/g at the optimum conditions. The experimental data were analyzed using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm. Moreover, the Kinetic of biosorption was determined. The equilibrium data were fitted well by the Freundlich model with a correlation coefficient R2=0.996, which showed the biosorption of tellurium is multilayer, and the biosorbent surface is heterogeneous. The maximum biosorption capacity of tellurium was 19.63 mg/g using D-R isotherm. The kinetic studies showed that the tellurium biosorption is very fast and the biosorption capacity reached a maximum of 15 minutes. Finally, the present research precisely confirmed that RSM is a suitable method to predict tellurium biosorption by Pseudomonas putida.


Main Subjects

[2] Bonificio W.D., Clarke D.R., Bacterial Recovery and Recycling of Tellurium from Tellurium‐Containing Compounds by Pseudoalteromonas sp. EPR 3, Journal of Applied Microbiology, 117: 1293-1304 (2014).
[4] Mokmeli M., Dreisinger D., Wassink B., Thermodynamics and Kinetics Study of Tellurium Removal with Cuprous Ion, Hydrometallurgy, 147-148: 20-29 (2014).
[5] Zhang L., Zhang M., Guo X., Liu X., Kang P., Chen x., Sorption Characteristics and Separation of Tellurium Ions from Aqueous Solutions using Nano-TiO2, Talanta, 83: 344-350 (2010).
[6] Yang L., Zhang L., Zhang M., Xu T., Li N., Li x., Song X., Study on the Separation of Tellurium from Cadmium in Aqueous Media using Nano-Particles Micro-Column, Separation Science and Technology, 48: 413-420 (2013).
[8] Vijayaraghavan K., Sang Yun Y., Bacterial Biosorbents and Biosorption, Biotechnology Advances, 26: 266-291 (2008).
[10] Arunarani A., Chandran P., Ranganathan B.V., Vasanthi N.S., Sudheer Khan S., Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas Putida and its Adsorption Isotherms and Kinetics, Colloids and Surfaces B: Biointerfaces, 102: 379-384 (2013).
[11] Deepa K., Chandran P., Sudheer Khan S., Bioremoval of Direct Red from Aqueous Solution by Pseudomonas Putida and its Adsorption Isotherms and Kinetics, Ecological Engineering, 58: 207-213 (2013).
[12] El-Naas M.H., Al-Muhtaseb Sh.A., Makhlouf S., Biodegradation of Phenol by Pseudomonas Putida Immobilized in Polyvinyl Alcohol (PVA) Gel, Journal of Hazardous Materials, 164: 720-725 (2009).
[13] Sohbatzadeh H., Keshtkar A.R., Safdari J., Fatemi F., U(VI) Biosorption by Bi-Functionalized Pseudomonas Putida @ Chitosan Bead: Modeling and Optimization using RSM, International Journal of Biological Macromolecules, 89: 647-658 (2016).
[14] Hou X., Amais R.S., Jones B.T., Donati G.L., Inductively Coupled Plasma Optical Emission Spectrometry, Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 9468-9485 (2000).
[15] محمدی­ها م.‌‌، امانی ح.‌‌، کریمی­نژاد ح.‌‌، بررسی جذب زیستی فلزهای سنگین روی و کبالت توسط قارچ غیرزنده PTCC 5270 Phanerochaet Crysosperium ، نشریه شیمی و مهندسی شیمی ایران‌‌، (3)38: 301 تا 308 (1398).
[16] Goleij M., Fakhraee H., Response Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution using MWCNT-Fe3O4 Nanocomposite, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36: 129-141 (2017).
[17] پارسازاده ن.‌‌، یوسفی ف.‌‌، قائدی م.‌‌، کریمی ر.‌‌، بروسان ف.‌‌، بهینه­ سازی فرایند جذب سطحی رنگ دی‌سولفین بلو توسط نانوذره‌های ZnO-Cr نشانده شده بر روی کربن فعال با استفاده از روش پاسخ سطح و مدل­ سازی با کمک شبکه عصبی مصنوعی، نشریه شیمی و مهندسی شیمی ایران‌‌، (4)37: 37 تا 54 (1397).
[18] Ghasemi Z., Seif A., Ahmadi T.S., Zargar B., Rashidi F., Rouzbahani G.M., Thermodynamic and Kinetic Studies for the Adsorption of Hg(II) by Nano-TiO2 from Aqueous Solution, Advanced Powder Technology, 23: 148-156 (2012).
[19] Van Thuan T., Phuong Quynh B.T., Duy Nguyen T., Thi Thanh Ho V., Bach L.G., Response Surface Methodology Approach for Optimization of Cu2+, Ni2+and Pb2+ Adsorption using KOH-Activated Carbon from Banana Peel, Surfaces and Interfaces, 6: 209-217 (2017).
[20] MohamedAli R ., Hamad H.A., Hussein M.M., Malash G.F., Potential of using Green Adsorbent of Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, Thermodynamic, Mechanism and Economic Analysis, Ecological Engineering, 91: 317-332 (2016).
[21] Maji S.K., Pal A., Pal T., Adak A., Adsorption Thermodynamics of Arsenic on Laterite Soil, Journal of Surface Science and Technology, 23: 161-176 (2007).
[22] Kütahyalı C., Sert S., Cetinkaya B., Yalcintas E., Bahadir Acar M., Biosorption of Ce(III) onto Modified Pinus Brutia Leaf Powder using Central Composite Design, Wood Science and Technology, 46: 721-736 (2012).
[24] Kamal M.A., Bibi S., Bokhari S.W., Siddique A.H., Yasin T., Synthesis and Adsorptive Characteristics of Novel Chitosan/Graphene Oxide Nanocomposite for Dye Uptake, Reactive and Functional Polymers, 110: 21-29 (2017).
[25] Abdel-Ghani N.T., El-Chaghaby G.A., Biosorption for Metal Ions Removal from Aqueous Solutions: A Review of Recent Studies, Int. J. Latest Res. Sci. Technol., 3: 24-42 (2014).
[26] Singh K.P., Singh A.K., Gupta S., Sinha S., Optimization of Cr(VI) Reduction by Zero-Valent Bimetallic Nanoparticles using the Response Surface Modeling Approach, Desalination, 270: 275-284 (2011)
[27] Mirzabe G.H., Keshtkar A.R., Application of Response Surface Methodology for Thorium Adsorption on PVA/Fe3O4/SiO2/APTES Nanohybrid Adsorbent, Journal of Industrial and Engineering Chemistry, 26: 277-285 (2015).
[28] Baş D., Boyacı I.H., Modeling and Optimization I: Usability of Response Surface Methodology, Journal of food engineering, 78: 836-845 (2007).
[29] Chen X.C., Wang Y.P., Lin Q., Shi J.Y., Wu W.X., Chen Y.X., Biosorption of Copper(II) and Zinc(II) from Aqueous Solution by Pseudomonas Putida CZ1, Colloids and Surfaces B: Biointerfaces, 46: 101-107 (2005).