The Investigation of Mechanical Properties and Surface Properties of Pure Alginate Fibers Containing Olive Oil with Wet Spinning Device Digital Control Method

Document Type : Research Article


Department of Textile Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN


Alginate is a polysaccharide isolated from seaweed. This polymer is relatively biocompatible and has a negative charge. As a biochemical substance, it is widely used in drug release, wound production, printing, dyeing, and completing textiles. One of the most important methods for producing this biochemical polymer is the wet spinning method. In the present study, for the production of laboratory-scale alginate fibers, the wet spinning method, a chemical-based method, was used. After examining the behavior of polymeric polymer rheology that plays  an important role in determining the membrane performance, adding olive oil to the spinning solution increased viscosity from 0.55605 [Pa.s]to 2.0542 [Pa.s]. The fibers produced had an integrated and uniform diameter. The strength and the structural properties of the fiber were examined. The results showed that the effect of the olive oil was to increase the stability of the spinning and elasticity of the fiber. An increase in strength was observed with an increase in porosity in the fiber structure. Multiple maps were prepared from the results of linear analysis and analysis was done using Energy Dispersive x-ray Spectroscopy(EDS). The presence of olive oil was confirmed in the linear analysis and the images of the alginate showed samples containing olive oil.


Main Subjects

[1] Haider S., Kamal T., Khan S.B., Omer M., Haider A., Khan F.U., Asiri A.M.  Natural Polymers Supported Copper Nanoparticles for Pollutants Degradation, Applied Surface Science387: 1154-1161 (2016).
[2] Zhang F., Lu Q., Yue X., Zuo B., Qin M., Li F., ... Zhang, X.  Regeneration of High-Quality Silk Fibroin Fiber by Wet Spinning from CaCl2–Formic Acid Solvent, Acta Biomaterialia12: 139-145 (2015).
[3] Mirabedini A., Foroughi J., Wallace G.G.,  Developments in Conducting Polymer Fibres: from Established Spinning Methods Toward Advanced Applications, RSC Advances6(50): 44687-44716 (2016).
[4] Jia Z., Lu C., Liu Y., Zhou P., Wang L. Lignin/Polyacrylonitrile Composite Hollow Fibers Prepared by Wet-Spinning Method, ACS Sustainable Chemistry & Engineering4(5): 2838-2842 (2016).
[5] Hu X., Rajendran S., Yao Y., Liu Z., Gopalsamy K., Peng L., Gao C., A Novel Wet-Spinning Method of Manufacturing Continuous Bio-Inspired Composites based on Graphene Oxide and Sodium Alginate, Nano Research9(3): 735-744 (2016).
[6] East G.C., Qin Y.,  Wet Spinning of Chitosan and the Acetylation of Chitosan Fibers, Journal of applied polymer science50(10): 1773-1779 (1993).
[7] Cong H.P., Ren X.C., Wang P., Yu S.H., Wet-Spinning Assembly of Continuous, Neat, and Macroscopic Graphene Fibers, Scientific ports2: 613 (2012).
[8] Paul D.R., Diffusion During the Coagulation Step of Wet‐Spinning. Journal of Applied Polymer Science12(3): 383-402 (1968).
[9] Jalili R., Razal J.M., Innis P.C., Wallace G.G., One‐Step Wet‐Spinning Process of Poly (3, 4‐Ethylenedioxythiophene): Poly (Styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity, Advanced Functional Materials, 21(17): 3363-3370 (2011).
[10] Bajaj P., Sreekumar T.V., Sen K., Structure Development during Dry–Jet–Wet Spinning of Acrylonitrile/Vinyl Acids and Acrylonitrile/Methyl Acrylate Copolymers, Journal of Applied Polymer Science86(3): 773-787 (2002).
[11] Loeb M., Crawford L., Graham R., Siminuk M. U.S. Patent Application No. 09/961,692 (2003).‏
[12] Tang Y., Li N., Liu A., Ding S., Yi C., Liu H., Effect of Spinning Conditions on the Structure and Performance of Hydrophobic PVDF Hollow Fiber Membranes for Membrane Distillation, Desalination287: 326-339 (2012).
[13] Grigoriu A., Racu C., Diaconescu R.M., Grigoriu A.M., Modeling of the Simultaneous Process of Wet Spinning-Grafting of Bast Fibers Using Artificial Neural Networks. Textile Research Journal82(4): 324-335 (2012).
[14] Gao G., Xu C., Xi, L., Ma Y., Chen J., Jiang L., Research and Manufacture of 167dtex/288f Superfine-Flat PET DTY [J]. Advanced Textile Technology, 1: (2010).
[15] Tyrolczyk E., Grajek K., Łochyńska M., Zastosowanie Lnu, Konopi I Nanowłókien Do Ochrony Powietrza Przed Mikroorganizmami, Chemik65(11): 1147-1160 (2011).
[16] Sibaja B., Culbertson E., Marshall P., Boy R., Broughton R.M., Solano A.A., ... Auad M.L., Preparation of Alginate–Chitosan Fibers with Potential Biomedical Applications, Carbohydrate polymers134: 598-608 (2015).
[17] Murakami K., Aoki H., Nakamura S., Nakamura S.I., Takikawa M., Hanzawa M., ... Sato Y., Hydrogel Blends of Chitin/Chitosan, Fucoidan and Alginate as Healing-Impaired Wound Dressings, Biomaterials31(1): 83-90 (2010).
[18] Das R.K., Kasoju N., Bora U., Encapsulation of Curcumin in Alginate-Chitosan-Pluronic Composite Nanoparticles for Delivery to Cancer Cells, Nanomedicine: Nanotechnology, Biology and Medicine6(1): 153-160 (1010).
[19] Zhang Y., Wei W., Lv P., Wang L., Ma G., Preparation and Evaluation of Alginate–Chitosan Microspheres for Oral Delivery of Insulin, European Journal of pharmaceutics and biopharmaceutics, 77(1): 11-19 (2011).
[20] Bourbon A.I., Pinheiro A.C., Ribeiro C., Miranda C., Maia J.M., Teixeira J. A., Vicente A.A., Characterization of Galactomannans Extracted from Seeds of Gleditsia Triacanthos and Sophora Japonica through Shear and Extensional Rheology: Comparison with Guar Gum and Locust Bean Gum, Food Hydrocolloids24(2-3): 184-192 (2010).
[21] Kadoğlu H., Dimitrovski K., Marmaralı A., Çelik P., Bayraktar G.B., Üte T.B., ... Kostanjek K., Investigation of the Characteristics of Elasticised Woven Fabric by using PBT Filament Yarns, Autex Research Journal16(2): 109-117 (2016).
[22] Choi H., Mitchell J.R., Gaddipati S.R., Hill S.E., Wolf B., Shear Rheology and Filament Stretching Behaviour of Xanthan Gum and Carboxymethyl Cellulose Solution in Presence of Saliva, Food hydrocolloids40: 71-75 (2014).
[23] Tan L., Pan J., Wan A., Shear and Extensional Rheology of Polyacrylonitrile Solution: Effect of Ultrahigh Molecular Weight Polyacrylonitrile, Colloid and Polymer Science290(4): 289-295 (2012).
[24] Torres M.D., Hallmark B., Wilson D. I., Effect of Concentration on Shear and Extensional Rheology of Guar Gum Solutions, Food Hydrocolloids40: 85-95 (2014).
[25] Rodríguez-Rivero C., Hilliou L., del Valle E.M.M., Galán M.A., Rheological Characterization of Commercial Highly Viscous Alginate Solutions in Shear and Extensional Flows, Rheologica Acta53(7): 559-570 (2014).
[26] Li H., Liu S., Lin L., Rheological Study on 3D Printability of Alginate Hydrogel and Effect of Graphene Oxide, Int. J. Bioprinting, 2(2): 54-66 (2016).
[27] Hermansson E., Schuster E., Lindgren L., Altskär A., Ström A., Impact of Solvent Quality on the Network Strength and Structure of Alginate Gels, Carbohydrate Polymers144: 289-296 (2016).
[28] Gao T., Gillispie G.J., Copus J.S., Seol Y.J., Atala A., Yoo J.J., Lee S.J., Optimization of Gelatin–Alginate Composite Bioink Printability using Rheological Parameters: A Systematic Approach, Biofabrication10(3): 034106 (2018).
[29] Sterner M., Edlund U., High-Performance Filaments from Fractionated Alginate by Polyvalent Cross-Linking: A Theoretical and Practical Approach, Biomacromolecules19(8): 3311-3330 (2018).
[30] Liu Q., Li Q., Xu S., Zheng Q., Cao X., Preparation and Properties of 3D Printed Alginate–Chitosan Polyion Complex Hydrogels for Tissue Engineering, Polymers10(6): 664 (2018).
[31] Reichel E.K., Gamsjaeger G., Bradt E., Kracalik M., Jakoby B., Voglhuber-Brunnmaier T., Measuring Extensional Viscosity of Biofluids using Electrical Breakup Rheometry, In Sensors and Measuring Systems; 19th ITG/GMA-Symposium, 1-4 VDE (2018).
[32] Mession J.L., Blanchard C., Mint-Dah F.V., Lafarge C., Assifaoui A., Saurel R., The Effects of Sodium Alginate and Calcium Levels on Pea Proteins Cold-Set Gelation, Food Hydrocolloids31(2): 446-457 (2013).
[33] Lundahl M.J., Klar V., Ajdary R., Norberg N., Ago M., Cunha A.G., Rojas O.J., Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning, ACS Applied Materials & Interfaces10(32): 27287-27296 (2018).
[34] Phan D.D., Swain Z.R., Mackay M.E.,  Rheological and Heat Transfer Effects in Fused Filament Fabrication. Journal of Rheology62(5): 1097-1107 (2018).
[35] White E.E.B., Chellamuthu M., Rothstein J.P., Extensional Rheology of a Shear-Thickening Cornstarch and Water Suspension, Rheologica Acta, 49(2): 119-129 (2010).