Immobilization of TiO2 Nanoparticles over Mesoporous MCM-41 Adsorbent toward Treatment of Tetracycline Antibiotic-Contaminated Water

Document Type : Research Article

Authors

1 Chemical Engineering Faculty, Sahand University of Technology, Tabriz, I.R. IRAN

2 Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, I.R. IRAN

Abstract

The goal of this study is to synthesize TiO2(10)/MCM-41 nanocomposite via the hydrothermal-impregnation method and compare its performance with bare TiO2 nanoparticles with the aim of assessing the role of silica support in the removal of tetracycline antibiotics. The physicochemical properties of synthesized photocatalysts were investigated using various analyzes. The results of XRD and EDX analyses indicated the successful synthesis of TiO2(10)/MCM-41 nanocomposite. FESEM and EDX images showed the existence of nanosized small surface particles with uniform size distribution and dispersion over the structure of TiO2(10)/MCM-41. FESEM images also revealed that nanoparticles size decrease and the formation of agglomerations are prevented as a result of nanoparticle immobilization. The PL and DRS techniques confirmed that the TiO2 immobilization results in a decrease in electron-hole recombination and surface nanoparticle size. The N2 adsorption-desorption analysis showed that the synthesized nanocomposite has a high specific surface area (972 m2/g). According to the performance results, the tetracycline degradation over TiO2(10)/MCM-41 was 67.7% higher than that of the bare TiO2 nanoparticles. This enhancement can be due to the suitable crystalline structure of TiO2, smaller size and uniform distribution of TiO2 nanoparticles, high specific surface area, the decrease of charge carriers recombination, and prevention of photocatalyst aggregation as a result of the existence of MCM-41. Based on the kinetics consideration, the degradation rate of pollutants over immobilized nanoparticles is higher and follows the second-order reaction. Also, a degradation efficiency of 68% was obtained under operation conditions of 20 mg/L tetracycline concentration, 1.5 g/L photocatalyst dosage, and 2 h irradiation. The relatively high and constant activity after the first cycle of reuse refers to the suitable separation and thereupon, appropriate reusability of TiO2(10)/MCM-41 sample. Therefore, it can be concluded that in addition to easier and better separation, TiO2 immobilization over MCM-41 improves the optical and structural properties, and finally, increases the performance of the photocatalyst.

Keywords

Main Subjects


[2] Gadipelly C., Pérez-González A., Yadav G.D., Ortiz I., Ibáñez R., Rathod V.K., Marathe K.V., Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse, Ind. Eng. Chem. Res., 53(29): 11571-11592 (2014).
[3] Thomaidis N.S., Asimakopoulos A.G., Bletsou A.A., Emerging Contaminants: a Tutorial Mini-Review, Global NEST J., 14: 72-79 (2012).
[4] Chong M.N., Jin B., Chow C.W., Saint C., Recent Developments in Photocatalytic Water Treatment Technology: A Review, Water Res., 44: 2997-3027 (2010).
[5] Daghrir R., Drogui P., Tetracycline Antibiotics in the Environment: a Review, Environ. Chem. lett., 11: 209-227 (2013).
[6] Liu P., Liu W.-J., Jiang H., Chen J.-J., Li W.-W., Yu H.-Q., Modification of Bio-Char Derived from Fast Pyrolysis of Biomass and its Application in Removal of Tetracycline from Aqueous Solution, Bioresource Technol., 121: 235-240 (2012).
[7] Shi Y., Yang Z., Wang B., An H., Chen Z., Cui H., Adsorption and Photocatalytic Degradation of Tetracycline Hydrochloride using a Palygorskite-Supported Cu2O–TiO2 Composite, Appl. Clay Sci., 119: 311-320 (2016).
[8] Sakkas V., Calza P., Medana C., Villioti A., Baiocchi C., Pelizzetti E., Albanis T., Heterogeneous Photocatalytic Degradation of the Pharmaceutical Agent Salbutamol in Aqueous Titanium Dioxide Suspensions, Appl. Catal. B: Environ., 77: 135-144 (2007).
[9] Valdez H.A., Jiménez G.G., Granados S.G., de León C.P., Degradation of Paracetamol by Advance Oxidation Processes using Modified Reticulated Vitreous Carbon Electrodes with TiO2 and CuO/TiO2/Al2O3, Chemosphere, 89: 1195-1201 (2012).
[10] Ahmed S., Rasul M., Martens W.N., Brown R., Hashib M., Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: a Review on Current Status and Developments, Desalination, 261: 3-18 (2010).
[11] Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P., Kontos A.G., Dunlop P.S., Hamilton J.W., Byrne J.A., O'shea K., A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications, Appl. Catal. B: Environ., 125: 331-349 (2012).
[12] Tian L., Liu H., Gao Y., Degradation and Adsorption of Rhodamine B and Phenol on TiO2/MCM-41, Kinet. Catal., 53: 554-559 (2012).
[13] Soenmez M., Gudovan D., Truşca R., Ficai A., Ficai D., Andronescu E., Vasile B., Synthesis, Characterization and Testing of MCM-41/TiO2 Catalyst for Organic Dye Degradation, Dig J. Nanomater Bios., 10: 1329-1341 (2015).
[15] مقدم س.، ظرافت م.م.، صباغی ص.، تجزیه کاتالیستی نوری فنول با استفاده از نانوکامپوزیت C-TiO2، نشریه شیمی و مهندسی شیمی ایران، (1)37: 41 تا 50 (1397).
[17] Hu X., Sun Z., Song J., Zhang G., Li C., Zheng S., Synthesis of Novel Ternary Heterogeneous BiOCl/TiO2/Sepiolite Composite with Enhanced Visible-Light-Induced Photocatalytic Activity Towards Tetracycline, J. colloid Interf. Sci., 533: 238-250 (2019).
[18] Rimoldi L., Giordana A., Cerrato G., Falletta E., Meroni D., Insights on the Photocatalytic Degradation Processes Supported by TiO2/WO3 Systems. The Case of Ethanol and Tetracycline, Catal. Today, 328: 210-215  (2019).
[19] Reyes C., Fernandez J., Freer J., Mondaca M., Zaror C., Malato S., Mansilla H., Degradation and Inactivation of Tetracycline by TiO2 Photocatalysis, J. Photochem. Photobio. A: Chem., 184: 141-146 (2006).
[20] Khodadoost S., Hadi A., Karimi-Sabet J., Mehdipourghazi M., Golzary A., Optimization of Hydrothermal Synthesis of Bismuth Titanate Nanoparticles and Application for Photocatalytic Degradation of Tetracycline, J. Environ. chem. Engin., 5: 5369-5380 (2017).
[21] Loccufier E., Deventer K., Manhaeghe D., Van Hulle S.W., D'hooge D.R., De Buysser K., De Clerck K., Degradation Kinetics of Isoproturon and its Subsequent Products in Contact with TiO2 Functionalized Silica Nanofibers, Chem. Engin. J., 387: 124143 (2020).
[22] Li H., Zhang W., Liu Y., HZSM-5 Zeolite Supported Boron-Doped TiO2 for Photocatalytic Degradation of Ofloxacin, J. Mater. Res. Technol., 9(2): 2557-2567 (2020).
[23] Selvam P., Bhatia S.K., Sonwane C.G., Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves, Indus. Engin. Chem. Res., 40: 3237-3261 (2001).
[24] Pourahmad A., Sohrabnezhad S., Sadjadi M.S., Zare K., Preparation and Characterization of Host (Mesoporous Aluminosilicate Material)–Guest (Semiconductor Nanoparticles) Nanocomposite Materials, Mater. Lett., 62: 655-658 (2008).
[25] Hsien Y.-H., Chang C.-F., Chen Y.-H., Cheng S., Photodegradation of Aromatic Pollutants in Water over TiO2 Supported on Molecular Sieves, Appl. Catal. B: Environ., 31: 241-249  (2001).
[26] Sharma M.P., Kumari V.D., Subrahmanyam M., Photocatalytic Degradation of Isoproturon Herbicide over TiO2/Al-MCM-41 Composite Systems using Solar Light, Chemosphere, 72: 644-651 (2008).
[27] Asghari E., Haghighi M., Rahmani F., CO2 Oxidative Dehydrogenation of Ethane to Ethylene over Cr/MCM-41 Nanocatalyst Synthesized via Hydrothermal/Impregnation Methods: Influence of Chromium Content on Catalytic Properties and Performance, J. Molecular Catal. A: Chem., 418: 115-124 (2016).
[28] Al-Awadi A.S., El-Toni A.M., Alhoshan M., Khan A., Shar M.A., Abasaeed A.E., Al-Zahrani S.M., Synergetic Impact of Secondary Metal Oxides of Cr-M/MCM41 Catalyst Nanoparticles for Ethane Oxidative Dehydrogenation using Carbon Dioxide, Crystals, 10: 7 (2020).
[29] Zhou J., Yang X., Wang Y., Chen W., An Efficient Oxidation of Cyclohexane over Au@ TiO2/MCM-41 Catalyst Prepared by Photocatalytic Reduction Method using Molecular Oxygen as Oxidant, Catal. Commun., 46: 228-233 (2014).
[31] Zhang X., Wang L., Liu C., Ding Y., Zhang S., Zeng Y., Liu Y., Luo S., A Bamboo-Inspired Hierarchical Nanoarchitecture of Ag/CuO/TiO2 Nanotube Array for Highly Photocatalytic Degradation Of 2, 4-Dinitrophenol, J hazard. mater., 313: 244-252 (2016).
[33] Rauf M.A., Meetani M.A., Khaleel A., Ahmed A., Photocatalytic Degradation of Methylene Blue using a Mixed Catalyst and Product Analysis by LC/MS, Chem. Engin. J., 157: 373-378  (2010).
[34] Wang X., Jia J., Wang Y., Combination of Photocatalysis with Hydrodynamic Cavitation for Degradation of Tetracycline, Chem. Engin. J., 315: 274-282 (2017).
[35] Tiwari A., Shukla A., Lalliansanga, Tiwari D., Lee S.-M., Au-Nanoparticle/Nanopillars TiO2 Meso-Porous Thin Films in the Degradation of Tetracycline using UV-A Light, J. Indus. Engin. Chem., 69: 141-152 (2019).
[36] Lalhriatpuia C., Tiwari D., Tiwari A., Lee S.M., Immobilized Nanopillars-TiO2 in the Efficient Removal of Micro-Pollutants from Aqueous Solutions: Physico-Chemical Studies, Chem. Engin. J., 281: 782-792  (2015).