Application of Furan-Functionalized MCM-41 for the Removal of Cu(II) from Water, Experimental Study, and Mont Carlo Simulation

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, I.R. IRAN

Abstract

In this study, the two novel modified structures of MCM-41 with furan ring were synthesized for the removal of Cu(II) ions from water. These novel adsorbents were synthesized by amination of MCM-41 using 3-Amino-propyltrimethoxy-silane and 3- (2-aminoethylamino) propyltrimethoxy-silane in the first step, and then using a furfural compound And the condensation reaction, the MCM-41 modified with furan groups, abbreviated as MCM-41@NO and MCM-41@N2O.Characterization and investigation of the adsorbent structure was performed using XRD, FT-IR, and BET. The concentration of soluble ions with Flame Atomic Absorption Spectrometry (FAAS) was determined. The adsorbent efficiency in removing copper ions was studied by examining variables such as adsorbent dose, pH, contact time, and soluble temperature. The equilibrium of adsorption of both absorbents fits into the Freundlich isotherm model. The kinetics study of adsorption shows the second order of kinetics for both absorbents. The study of the adsorption of Cu2+(aq) on the MCM-41@NO by using Monte Carlo molecular mechanics is the innovation of this work. The results of these calculations are compared to experimental results. The results of calculations show that the Cu2+ ions at 1.63Å from the surface of absorbent with 0.75 kcal/mol energy have the maximum probability of distribution.

Keywords

Main Subjects


[1] اسلامی ب.، احسانی نمین پ.، قاسمی ا.، عزیزی ح.، کرابی م.، بررسی جذب یون کادمیم از محلول آبی با استفاده از نانوکامپوزیت بر پایه کیتوسان/ نانو صفحه‌های گرافن اصلاح شده با تری‌اتیل آمین، نشریه شیمی و مهندسی شیمی ایران، (2)36: 115 تا 125 (1396). 
[2] Hait-Darshan R., Babushkin T., Malik Z., Regulation of Heme Synthesis and Proteasomal Activity by Copper: Possible Implications for Wilson's Disease, J. Environ. Pathol. Toxicol. Oncol., 28(3): 209-221 (2009).
[3] Veli S., Alyuz B., Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay, Journal of Hazardous Materials, 149(1): 226-233 (2007).
[4] Al-Saydeha S.A., El-Naasa M.H., Zaidi S.J., Copper Removal from Industrial Wastewater: A Comprehensive Review, Journal of Industrial and Engineering Chemistry, 56: 35–44 (2017).
[5] Pérez-Quintanilla D., Snchez A., del Hierro I., Fajardo M., Sierra I., Preparation, Characterization, and Zn2+ Adsorption Behavior of Chemically Modified MCM-41 with 5-Mercapto-1-Methyltetrazole, Journal of Colloid and Interface Science, 313(2): 551-562 (2007).
[6] Amini M., Younesi H., Bahramifar N., Statistical Modeling and Optimization of the Cadmium Biosorption Process in an Aqueous Solution using Aspergillus Niger, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337(1): 67-73 (2009).
[7] Heidari A., Younesi H., Mehraban Z., Removal of Ni(II), Cd(II), and Pb(II) from a Ternary Aqueous Solution by Amino Functionalized Mesoporous and Nano Mesoporous Silica, Chemical Engineering Journal, 153(1): 70-79 (2009).
[8] Walcarius A., Mercier L., Mesoporous Organosilica Adsorbents: Nanoengineered Materials for Removal of Organic and Inorganic Pollutants, Journal of Materials Chemistry, 20: 4478-4511 (2010).
[9] Lim M.H., Stein A., Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials, Chemistry of Materials, 11(11): 3285-3295 (1999).
[10] Reddy D.H.K., Lee S.M., Application of Magnetic Chitosan Composites for the Removal of Toxic Metal and Dyes from Aqueous Solutions, Adv. Colloid Inter. Sci, 202: 68-93 (2013).
[12] زوار موسوی ح.، لطفی ز.، جذب یون‌های فلزی سنگین بر روی خاکستر برگ زیتون: مطالعه هم‌دما و سینتیک، مجله شیمی کاربردی، (7)23: 49 تا 56 (1391).
[13] نبوی س.ر.، شمسی م.، تهیه و مشخصه‎یابی نانوکامپوزیت پلی‌آنیلین/گرافن اکسید و بررسی کارایی آن در حذف کروم (VI) از محیط‌های آبی، مجله شیمی کاربردی، ویژه نامه دومین سمینار شیمی کاربردی، 29 تا 41 (1397).
[14] اولاد ع.، باستانیان م.، بخت خوش حق ه.، بررسی حذف کروم شش ظرفیتی از محلول‌های آبی توسط نانوکامپوزیت نشاسته-مونت موریلونیت/پلی آنیلین، مجله شیمی کاربردی، ویژه نامه دومین سمینار شیمی کاربردی، 57 تا 71 (1397).
[16] حسنی نژاد درزی س.ک.، رضوانی ر.، پورعلی س.م.، الکترواکسایش فرمالدهید با استفاده از الکترود خمیر کربن اصلاح شده با نانوزئولیت MCM-41 دارای نقره، نشریه شیمی و مهندسی شیمی ایران، (1)37: 51 تا 61 (1397).
[17] Mathew A., Parambadath S., Kim S.Y., Min Ha H., Ha C.S., Diffusion Mediated Selective Adsorption of Zn2+ from Artificial Seawater by MCM-41, Microporous and Mesoporous Materials, 229: 124-133 (2016).
[18] Fellenz N., Perez-Alonso F.J., Martin P.P., García-Fierro J.L., Bengoa J.F., Marchetti S.G., Rojas S., Chromium (VI) Removal from Water by Means of Adsorption-Reduction at the Surface of Amino-Functionalized MCM-41 Sorbents, Microporous and Mesoporous Materials, 239: 138-146 (2017).
[19] Thakur A.K., Nisola G.M., Limjuco L.A., Parohinog K.J., Torrejos R.E.C., Shahi V.K., Chung W.J., Polyethylenimine-Modified Mesoporous Silica Adsorbent for Simultaneous Removal of Cd(II) and Ni(II) from Aqueous Solution, J. Ind. Eng. Chem, 49: 133-144 (2017).
[20] Zhang H., Sun H., Zhang D., Zhang W., Chen S., Li M., Liang P., Nanoconfinement of Ag Nanoparticles Inside Mesoporous Channels of MCM-41 Molecule Sieve as a Regenerable and H2O Resistance Sorbent for Hg0 Removal in Natural Gas, Chemical Engineering Journal,  361: 139-147 (2019).
[21] Song H., You J.A., Chen C., Zhang H., Zhen Ji X., Li C., Yang Y., Xu N. I., Huang J., Manganese Functionalized Mesoporous Molecular Sieves Ti-HMS as a Fenton-Like Catalyst for Dyes Wastewater Purification by Advanced Oxidation Processes,  Journal of Environmental Chemical Engineering, 4(4): 4653-4660 (2016).
[22] Martin P.P., Agosto M.F., Bengoa J.F., Fellenz N.A., Zinc and Chromium Elimination from Complex Aqueous Matrices using a Unique Aminopropyl-Modified MCM-41 Sorbent: Temperature, Kinetics and Selectivity Studies, Journal of Environmental Chemical Engineering, 5(1): 1210-1218 (2017).
[23] Cui H.Z., Li Y.L., Liu S., Zhang J.F., Zhou Q., Zhong R., Yang M.L., Hou X.F., Novel Pb(II) Ion-Imprinted Materials based on Bis-Pyrazolyl Functionalized Mesoporous Silica for the Selective Removal of Pb(II) in Water Samples, Microporous and Mesoporous Materials, 241: 165- 177 (2017).
[24] Zhang S., Perez-Page M., Guan K., Yu E., Tringe J., Castro R. Faller R.H.R., Stroeve P., Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties, Langmuir, 32(44): 11422-11431 (2016).
[26] Jing Yu., Wei Li., Wang Yundong., Yangxin.Yu., Molecular Simulation of MCM-41: Structural Properties and Adsorption of CO2, N2 and Flue Gas, Chemical Engineering Journal, 220(15): 264-275 (2013).
[27] مجیدی ر.، منصوری خ.، شبیه‌سازی دینامیک مولکولی جذب مخلوط اکسیژن و نیتروژن روی نانومخروط و نانولوله کربنی، نشریه شیمی و مهندسی شیمی ایران، (3)36: 133 تا 141 (1396).
[28] LIANG S., XU J., CHEN J., Study on Adsorption of Water in MCM41 Containing Metal Ions by Molecular Dynamic Simulations, J. of Thermal Science, 13(2): 187-192 (2004).
[29] Li P., Merz K.M., Metal Ion Modeling using Classical Mechanics, Chem. Rev, 117(3): 1564-1686 (2017).
[30] عبدالی ن.، مرجانی ا.، حذف یون‌های روی و مس با زئولیت ها: مطالعه شبیه‌سازی دینامیکی مولکولی، نشریه شیمی و مهندسی شیمی ایران، (2)39: 1 تا 7 (1397).
[31] Zarei G., Zonouzi F., Immobilization of Cobaloxime on MCM- 41, J. Appl.Chem. Res, 8(2): 37-45 (2014).
[32] Abrantes M., Sakthivela A., Ramao C.C., Kuhn F.E., A Chiral Menthyl Cyclopentadienyl Molybdenum Tricarbonyl Chloro Complex: Synthesis, Heterogenization on MCM-41/MCM-48 and Application in Olefin Epoxidation Catalysis, Journal of Organometallic Chemistry, 691(14): 3137-3145 (2006).
[33] Kureshy R., Ahmad I., Khan N.H., Abdi S., Singh S., Pandia P., Jasra R., New Immobilized Chiral Mn(III) Salen Complexes on Pyridine N-Oxide-Modified MCM-41 as Effective Catalysts for Epoxidation of Nonfunctionalized Alkenes, Journal of Catalysis, 235(1): 28-34 (2005).
[34] Oliveira P., Machado A., Ramos A.M., Fonseca I., Braz Fernandes F.M., Botelho do Rego A.M., Vital J., MCM-41 Anchored Manganese Salen Complexes as Catalysts for Limonene Oxidation, Micropor. Mesopor. Mater, 120(3): 432-440 (2009).
[35] Zhang S.,  Perez-Page M.,  Guan K., Yu E., Tringe J.W., Castro R.H.R., Faller R., Stroeve P., Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties, Langmuir32(44): 11422-11431 (2016).
[36] Sheshmani S., Falahat B., Nikmaram F.R., Preparation of Magnetic Graphene Oxide-Ferrite Nanocomposites Foroxidative Decomposition of Remazol Black B, International Journal of Biological Macromolecules, 97: 671–678 (2017).
[37] Materials Studio v6.0.0, Copyright 2011, Accelrys Software Inc.
[38] جلیلی  س.ا.،"شبیه‌سازی رایانه‌ای (دینامیک ملکولی و مونت کارلو)"  انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی، ص 46 (1390).
[39] Cieslaab U., Schüth F., Ordered Mesoporous Materials, Microporous and Mesoporous Materials, 72(2): 131-149 (1999).
[40] جلیلی س.ا.،"شبیه‌سازی رایانه‌ای (دینامیک ملکولی و مونت کارلو)"، انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی، ص 91 (1390).